UMGAN: Underwater Image Enhancement Network for Unpaired Image-to-Image Translation

被引:17
|
作者
Sun, Boyang [1 ,2 ,3 ,4 ]
Mei, Yupeng [1 ,2 ,3 ,4 ]
Yan, Ni [1 ,2 ,3 ,4 ]
Chen, Yingyi [1 ,2 ,3 ,4 ]
机构
[1] China Agr Univ, Natl Innovat Ctr Digital Fishery, Beijing 100083, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Smart Farming Technol Aquat Anim & Livesto, Beijing 100083, Peoples R China
[3] China Agr Univ, Beijing Engn & Technol Res Ctr Internet Things Agr, Beijing 100083, Peoples R China
[4] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
image enhancement; generative adversarial networks; underwater; noise reduction; HISTOGRAM EQUALIZATION; VISIBILITY;
D O I
10.3390/jmse11020447
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Due to light absorption and scattering underwater images suffer from low contrast, color distortion, blurred details, and uneven illumination, which affect underwater vision tasks and research. Therefore, underwater image enhancement is of great significance in vision applications. In contrast to existing methods for specific underwater environments or reliance on paired datasets, this study proposes an underwater multiscene generative adversarial network (UMGAN) to enhance underwater images. The network implements unpaired image-to-image translation between the underwater turbid domain and the underwater clear domain. It has a great enhancement impact on several underwater image types. Feedback mechanisms and a noise reduction network are designed to optimize the generator and address the issue of noise and artifacts in GAN-produced images. Furthermore, a global-local discriminator is employed to improve the overall image while adaptively modifying the local region image effect. It resolves the issue of over- and underenhancement in local regions. The reliance on paired training data is eliminated through a cycle consistency network structure. UMGAN performs satisfactorily on various types of data when compared quantitatively and qualitatively to other state-of-the-art algorithms. It has strong robustness and can be applied to various enhancement tasks in different scenes.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Underwater Image Dehazing via Unpaired Image-to-image Translation
    Cho, Younggun
    Jang, Hyesu
    Malav, Ramavtar
    Pandey, Gaurav
    Kim, Ayoung
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (03) : 605 - 614
  • [2] Underwater Image Dehazing via Unpaired Image-to-image Translation
    Younggun Cho
    Hyesu Jang
    Ramavtar Malav
    Gaurav Pandey
    Ayoung Kim
    [J]. International Journal of Control, Automation and Systems, 2020, 18 : 605 - 614
  • [3] Homomorphic Interpolation Network for Unpaired Image-to-Image Translation
    Chen, Ying-Cong
    Jia, Jiaya
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (05) : 2534 - 2547
  • [4] DehazeGAN: Underwater Haze Image Restoration using Unpaired Image-to-image Translation
    Cho, Younggun
    Malav, Ramavtar
    Pandey, Gaurav
    Kim, Ayoung
    [J]. IFAC PAPERSONLINE, 2019, 52 (21): : 82 - 85
  • [5] Holographic reconstruction enhancement via unpaired image-to-image translation
    Scherrer, Romane
    Selmaoui-folcher, Nazha
    Quiniou, Thomas
    Jauffrais, Thierry
    Lemonnier, Hugues
    Bonnet, Sophie
    [J]. APPLIED OPTICS, 2022, 61 (33) : 9807 - 9816
  • [6] Random Reconstructed Unpaired Image-to-Image Translation
    Zhang, Xiaoqin
    Fan, Chenxiang
    Xiao, Zhiheng
    Zhao, Li
    Chen, Huiling
    Chang, Xiaojun
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3144 - 3154
  • [7] Avoiding Shortcuts in Unpaired Image-to-Image Translation
    Fontanini, Tomaso
    Botti, Filippo
    Bertozzi, Massimo
    Prati, Andrea
    [J]. IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT I, 2022, 13231 : 463 - 475
  • [8] Unpaired image-to-image translation of structural damage
    Varghese, Subin
    Hoskere, Vedhus
    [J]. ADVANCED ENGINEERING INFORMATICS, 2023, 56
  • [9] Asymmetric GAN for Unpaired Image-to-Image Translation
    Li, Yu
    Tang, Sheng
    Zhang, Rui
    Zhang, Yongdong
    Li, Jintao
    Yan, Shuicheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (12) : 5881 - 5896
  • [10] Asynchronous Generative Adversarial Network for Asymmetric Unpaired Image-to-Image Translation
    Zheng, Ziqiang
    Bin, Yi
    Lv, Xiaoou
    Wu, Yang
    Yang, Yang
    Shen, Heng Tao
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2474 - 2487