Quantitative SWATH-based proteomic profiling of urine for the identification of endometrial cancer biomarkers in symptomatic women

被引:11
|
作者
Njoku, Kelechi [1 ,2 ,3 ]
Pierce, Andrew [1 ,2 ,4 ]
Geary, Bethany [1 ,2 ]
Campbell, Amy E. [1 ,2 ]
Kelsall, Janet [2 ]
Reed, Rachel [2 ]
Armit, Alexander [2 ]
Da Sylva, Rachel [2 ]
Zhang, Liqun [1 ]
Agnew, Heather [1 ,3 ]
Baricevic-Jones, Ivona [2 ]
Chiasserini, Davide [2 ,5 ]
Whetton, Anthony D. [6 ]
Crosbie, Emma J. [1 ,2 ,3 ]
机构
[1] Univ Manchester, St Marys Hosp, Fac Biol Med & Hlth, Sch Med Sci, 5th Floor Res,Oxford Rd, Manchester M13 9WL, England
[2] Univ Manchester, Inst Canc Sci, Fac Biol Med & Hlth, Stoller Biomarker Discovery Ctr, Manchester, England
[3] Manchester Univ NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Dept Obstet & Gynaecol, Manchester, England
[4] Bangor Univ, Coll Human Sci, Sch Med & Hlth Sci, Bangor LL57 2TH, Wales, England
[5] Univ Perugia, Dept Med & Surg, Sect Physiol & Biochem, I-06132 Perugia, Italy
[6] Univ Surrey, Fac Hlth & Med Sci, Sch Vet Med, Guildford GU2 7XH, England
关键词
EXPRESSION; PROTEINS; OVARIAN; METALLOPROTEINASES;
D O I
10.1038/s41416-022-02139-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundA non-invasive endometrial cancer detection tool that can accurately triage symptomatic women for definitive testing would improve patient care. Urine is an attractive biofluid for cancer detection due to its simplicity and ease of collection. The aim of this study was to identify urine-based proteomic signatures that can discriminate endometrial cancer patients from symptomatic controls.MethodsThis was a prospective case-control study of symptomatic post-menopausal women (50 cancers, 54 controls). Voided self-collected urine samples were processed for mass spectrometry and run using sequential window acquisition of all theoretical mass spectra (SWATH-MS). Machine learning techniques were used to identify important discriminatory proteins, which were subsequently combined in multi-marker panels using logistic regression.ResultsThe top discriminatory proteins individually showed moderate accuracy (AUC > 0.70) for endometrial cancer detection. However, algorithms combining the most discriminatory proteins performed well with AUCs > 0.90. The best performing diagnostic model was a 10-marker panel combining SPRR1B, CRNN, CALML3, TXN, FABP5, C1RL, MMP9, ECM1, S100A7 and CFI and predicted endometrial cancer with an AUC of 0.92 (0.96-0.97). Urine-based protein signatures showed good accuracy for the detection of early-stage cancers (AUC 0.92 (0.86-0.9)).ConclusionA patient-friendly, urine-based test could offer a non-invasive endometrial cancer detection tool in symptomatic women. Validation in a larger independent cohort is warranted.
引用
收藏
页码:1723 / 1732
页数:10
相关论文
共 50 条
  • [1] Quantitative SWATH-based proteomic profiling of urine for the identification of endometrial cancer biomarkers in symptomatic women
    Kelechi Njoku
    Andrew Pierce
    Bethany Geary
    Amy E. Campbell
    Janet Kelsall
    Rachel Reed
    Alexander Armit
    Rachel Da Sylva
    Liqun Zhang
    Heather Agnew
    Ivona Baricevic-Jones
    Davide Chiasserini
    Anthony D. Whetton
    Emma J. Crosbie
    British Journal of Cancer, 2023, 128 : 1723 - 1732
  • [2] Quantitative SWATH-Based Proteomic Profiling for Identification of Mechanism-Driven Diagnostic Biomarkers Conferring in the Progression of Metastatic Prostate Cancer
    Singh, Anshika N.
    Sharma, Neeti
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [3] Urine and vaginal cytology for endometrial cancer detection in symptomatic women
    Jones, Eleanor
    Narine, Nadira
    O'Flynn, Helena
    Barr, Chloe
    Njoku, Kelechi
    Carter, Suzanne
    Cornwall, Lisa
    Vinay, Sylvia
    Fullwood, Catherine
    Shelton, David
    Rana, Durgesh
    Crosbie, Emma
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2022, 129 : 39 - 40
  • [4] A proteomic approach for the identification of biomarkers in endometrial cancer uterine aspirate
    Ura, Blendi
    Monasta, Lorenzo
    Arrigoni, Giorgio
    Franchin, Cinzia
    Radillo, Oriano
    Peterlunger, Isabel
    Ricci, Giuseppe
    Scrimin, Federica
    ONCOTARGET, 2017, 8 (65) : 109536 - 109545
  • [5] OLFM4 Expression in Ductal Carcinoma In Situ and in Invasive Breast Cancer Cohorts by a SWATH-Based Proteomic Approach
    Valo, Isabelle
    Raro, Pedro
    Boissard, Alice
    Maarouf, Amine
    Jezequel, Pascal
    Verriele, Veronique
    Campone, Mario
    Coqueret, Olivier
    Guette, Catherine
    PROTEOMICS, 2019, 19 (21-22)
  • [6] Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer
    Duijvesz, Diederick
    Burnum-Johnson, Kristin E.
    Gritsenko, Marina A.
    Hoogland, A. Marije
    Vredenbregt-van den Berg, Mirella S.
    Willemsen, Rob
    Luider, Theo
    Pasa-Tolic, Ljiljana
    Jenster, Guido
    PLOS ONE, 2013, 8 (12):
  • [7] Quantitative urine proteomics in pregnant women for the identification of predictive biomarkers for preeclampsia
    Sakari Joenväärä
    Matilda Holm
    Mayank Saraswat
    Rahul Agarwal
    Tiialotta Tohmola
    Eero Kajantie
    Katri Räikkönen
    Hannele Laivuori
    Pia M. Villa
    Esa Hämäläinen
    Risto Renkonen
    Translational Medicine Communications, 7 (1)
  • [8] SWATH-based quantitative proteomic analysis of Morus alba L. leaves after exposure to ultraviolet-B radiation and incubation in the dark
    Li, Yaohan
    Liu, Shengzhi
    Shawky, Eman
    Tao, Minglei
    Liu, Amin
    Sulaiman, Kaisa
    Tian, Jingkui
    Zhu, Wei
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2022, 230
  • [9] Tissue-Based Proteomic Profiling in Patients with Hyperplasia and Endometrial Cancer
    Akkour, Khalid
    Alanazi, Ibrahim O.
    Alfadda, Assim A.
    Alhalal, Hani
    Masood, Afshan
    Musambil, Mohthash
    Rahman, Anas M. Abdel
    Alwehaibi, Moudi A.
    Arafah, Maria
    Bassi, Ali
    Benabdelkamel, Hicham
    CELLS, 2022, 11 (13)
  • [10] Proteomic profiling of childhood liver cancer: identification of novel diagnostic and prognostic biomarkers
    Del Rio-Alvarez, Alvaro
    Carrillo-Reixach, Juan
    Royo, Laura
    Domingo-Sabat, Montse
    Azkargorta, Mikel
    Kapler, Roland
    Cairo, Stefano
    Vokuhl, Christian
    de Krijger, Ronald
    Alaggio, Rita
    Garrido, Marta
    Guillen, Gabriela
    Sabado, Constantino
    Guerra, Laura
    Hernandez, Francisco
    Elena Mateos, Maria
    Lopez-Satamaria, Manuel
    Torres, Barbara
    Pilar Abad, Maria
    Viera, Bajciova
    Czauderna, Piotr
    Annick Buendia, Marie
    Elortza, Felix
    Wheatley, Keith
    Morland, Bruce
    Armengol, Carolina
    CLINICAL CANCER RESEARCH, 2022, 28 (17)