Applications of Symmetric Identities for Apostol-Bernoulli and Apostol-Euler Functions

被引:1
|
作者
He, Yuan [1 ]
机构
[1] Neijiang Normal Univ, Sch Math & Informat Sci, Neijiang 641100, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
Apostol-Bernoulli functions; Bernoulli functions; Apostol-Euler functions; quasi-periodic Euler functions; combinatorial identity; THETA-FUNCTIONS; HARDY SUMS; POLYNOMIALS; EISENSTEIN; FORMULAS; SERIES;
D O I
10.3390/sym15071384
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we perform a further investigation on the Apostol-Bernoulli and Apostol-Euler functions introduced by Luo. By using the Fourier expansions of the Apostol-Bernoulli and Apostol-Euler polynomials, we establish some symmetric identities for the Apostol-Bernoulli and Apostol-Euler functions. As applications, some known results, for example, Raabe's multiplication formula and Hermite's identity, are deduced as special cases.
引用
收藏
页数:11
相关论文
共 50 条