Developing empirical correlations between the shear-wave velocity (Vs) and the standard penetration test (SPT) blow count has been a long-term practice for sandy, silty, and clayey soils. However, the existing correlations are not suitable for gravelly soils because the SPT is not particularly reliable for gravelly soils due to the interference of SPT sampler with relatively large-size gravel particles. Hence, in the present study, a new correlation has been developed between Vs and the dynamic cone penetration test (DPT) resistance for gravelly soils. The DPT, which consists of a 74-mm-diameter cone to reduce the interference of large particles, has recently been used to correlate the liquefaction resistance of gravelly soils. A large database has recently been developed based on both DPTand V-s data collected from different companion sites all around the world to develop new liquefaction triggering procedures. Based on this database, linear and log-linear correlations have been developed considering the effect of vertical effective stress. Results showed that the correlations among the uncorrected DPTand Vs resistance and the vertical effective stress are much stronger in comparison with the correlation obtained between the overburden-corrected DPT resistance and Vs. A reasonable agreement was observed between the measured and computed Vs for both linear and log-linear correlations. (c) 2023 American Society of Civil Engineers.