Flexible extreme value inference

被引:0
|
作者
Jordanova, Pavlina [1 ]
Stehlik, Milan [2 ,3 ]
机构
[1] Shumen Univ, Fac Math & Comp Sci, Shumen, Bulgaria
[2] Univ Valparaiso, Inst Stat, Valparaiso, Chile
[3] Univ Andres Bello, Fac Ingn, Santiago, Chile
关键词
Asymptotic normality; Hill estimator; t-Hill estimator; Harmonic mean estimator; Hill-plot; Karamata representation; REGULAR VARIATION; TAIL INDEX; HILL; POPULATION; ESTIMATOR; EXPONENT; SAMPLES;
D O I
10.1080/07362994.2023.2213745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce flexible small sample modeling for extremes by introducing the new numerical characteristics of heavy tail. We illustrate in this article advantages of such flexibility. In this article, we show that we can obtain asymptotic normality of generalized Hill estimators by application of Karamata's representation for regularly varying tails. Second order regularity conditions however better relates to Edgeworth types of normal approximations albeit requiring larger data samples. Finally both expansions are prone for bootstrap and other subsampling techniques. All existing results indicate that proper representation of tail behavior play a special and somewhat intriguing role in that context. The application of this new methodology is simple and flexible, handsome for real data sets. Alternative and powerful versions of the Hill plot are also introduced and illustrated on real data of snow extremes from Slovakia. We also demonstrate the importance of box-plot based techniques for small samples.
引用
收藏
页码:219 / 263
页数:45
相关论文
共 50 条
  • [1] Distributed inference for the extreme value index
    Chen, Liujun
    Li, Deyuan
    Zhou, Chen
    [J]. BIOMETRIKA, 2022, 109 (01) : 257 - 264
  • [2] Bayesian inference for multivariate extreme value distributions
    Dombry, Clement
    Engelke, Sebastian
    Oesting, Marco
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4813 - 4844
  • [3] Penalized likelihood inference in extreme value analyses
    Pauli, F
    Coles, S
    [J]. JOURNAL OF APPLIED STATISTICS, 2001, 28 (05) : 547 - 560
  • [4] Extreme Value GARCH modelling with Bayesian inference
    Zhao, X.
    Oxley, L.
    Scarrott, C.
    Reale, M.
    [J]. 18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: INTERFACING MODELLING AND SIMULATION WITH MATHEMATICAL AND COMPUTATIONAL SCIENCES, 2009, : 1391 - 1397
  • [5] A flexible extreme value mixture model
    MacDonald, A.
    Scarrott, C. J.
    Lee, D.
    Darlow, B.
    Reale, M.
    Russell, G.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (06) : 2137 - 2157
  • [6] Likelihood-Based Inference for Extreme Value Models
    Stuart G. Coles
    Mark J. Dixon
    [J]. Extremes, 1999, 2 (1) : 5 - 23
  • [7] Distributionally robust inference for extreme Value-at-Risk
    Yuen, Robert
    Stoev, Stilian
    Cooley, Dan
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2020, 92 : 70 - 89
  • [8] EXTREME VALUE INFERENCE FOR HETEROGENEOUS POWER LAW DATA
    Einmahl, John H. J.
    He, Yi
    [J]. ANNALS OF STATISTICS, 2023, 51 (03): : 1331 - 1356
  • [9] STATISTICAL INFERENCE ON A CHANGING EXTREME VALUE DEPENDENCE STRUCTURE
    Drees, Holger
    [J]. ANNALS OF STATISTICS, 2023, 51 (04): : 1824 - 1849
  • [10] GARCH dependence in extreme value models with Bayesian inference
    Zhao, Xin
    Scarrott, Carl John
    Oxley, Les
    Reale, Marco
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (07) : 1430 - 1440