Molecular Regulation of Flexible Composite Solid-Solid Phase Change Materials with Controllable Isotropic Thermal Conductivity for Thermal Energy Storage

被引:8
|
作者
Tian, Chong [1 ]
Yang, Yunyun [2 ,3 ]
Liu, Qiang [1 ]
Bai, Yuting [1 ]
Zhao, Fuqi [1 ]
Huang, Lei [1 ]
Yang, Na [1 ]
Cai, Xufu [1 ]
Kong, Weibo [1 ]
机构
[1] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
[2] Civil Aviat Flight Univ China, Coll Civil Aviat Safety Engn, Guanghan 618307, Peoples R China
[3] Civil Aviat Flight Univ China, Civil Aircraft Fire Sci & Safety Engn Key Lab Sich, Guanghan 618307, Peoples R China
基金
中国国家自然科学基金;
关键词
applications; pi-pi stacking; graphene; flexible; thermal conductivity; thermal conductivity efficient enhancement; solid-solid phase change materials; GRAPHENE; ACID;
D O I
10.1021/acsami.3c00169
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years, graphene has been introduced into phase change materials (PCMs) to improve thermal conductivity to enhance the heat transfer efficiency in thermal energy storage. However, graphenes tend to aggregate in PCMs, leading to the low thermal conductivity efficient enhancement (TCEE), anisotropic thermal conductivity, and deterioration of mechanical performance of PCMs. In this work, we fabricated biomimetic thermally conductive solid- solid PCMs (SSPCMs) by facile blending of the graphene into well-designed polyurethane SSPCMs, in which the graphene established a controllable and highly efficient isotropic thermally conductive pathway based on the p-p stacking between the graphene and the polymer aromatic ring segment. The as-fabricated SSPCMs showed high TCEE (156.78%), excellent flexibility (328% elongation at break), high enthalpy value (>101 J/g), and solid-solid phase transition properties, under 2% loading of graphene. The proportion of in-plane to through-plane thermal conductivity can be adjusted by an elaborate design of the aromatic ring segment in polyurethane SSPCMs. We further demonstrated mechanical flexibility and photothermal property of the composites to reveal their potential in practical
引用
收藏
页码:13165 / 13175
页数:11
相关论文
共 50 条
  • [1] Thermal Conductivity Enhancement of Solid-Solid Phase-Change Materials for Thermal Storage
    Son, C. H.
    Morehouse, J. H.
    [J]. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1991, 5 (01) : 122 - 124
  • [2] Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties
    Fallahi, Ali
    Guldentops, Gert
    Tao, Mingjiang
    Granados-Focil, Sergio
    Van Dessel, Steven
    [J]. APPLIED THERMAL ENGINEERING, 2017, 127 : 1427 - 1441
  • [3] Polyurethanes as solid-solid phase change materials for thermal energy storage
    Alkan, Cemil
    Guenther, Eva
    Hiebler, Stefan
    Ensari, Omer F.
    Kahraman, Derya
    [J]. SOLAR ENERGY, 2012, 86 (06) : 1761 - 1769
  • [4] Research progress of solid-solid phase change materials for thermal energy storage
    Zhou S.
    Zhang Z.
    Fang X.
    [J]. Fang, Xiaoming (cexmfang@scut.edu.cn), 1600, Materials China (40): : 1371 - 1383
  • [5] Mechanically strong, healable, and recyclable supramolecular solid-solid phase change materials with high thermal conductivity for thermal energy storage
    Zhu, Hao
    Gu, Meijuan
    Dai, Xinyi
    Feng, Siyu
    Yang, Tao
    Fan, Yijuan
    Zhang, Jingyi
    Fan, Dongli
    Liu, Yuan
    Lu, Yaqing
    Zhu, Peng
    Lu, Hongbin
    Qian, Tao
    Cao, Yufeng
    Yan, Chenglin
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [6] Linear polyurethane ionomers as solid-solid phase change materials for thermal energy storage
    Chen, Kai
    Liu, Ruowang
    Zou, Chao
    Shao, Qinyi
    Lan, Yunjun
    Cai, Xiaoqing
    Zhai, Lanlan
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 130 : 466 - 473
  • [7] Recent developments in solid-solid phase change materials for thermal energy storage applications
    Zhi, Maoyong
    Yue, Shan
    Zheng, Lingling
    Su, Bingjian
    Fu, Ju
    Sun, Qiang
    [J]. JOURNAL OF ENERGY STORAGE, 2024, 89
  • [8] Oriented High Thermal Conductivity Solid-Solid Phase Change Materials for Mid-Temperature Solar-Thermal Energy Storage
    Dai, Zhaofeng
    Gao, Yuanzhi
    Wang, Changling
    Wu, Dongxu
    Jiang, Zhu
    She, Xiaohui
    Ding, Yulong
    Zhang, Xiaosong
    Zhao, Dongliang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (22) : 26863 - 26871
  • [9] Novel solid-solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage
    Fu, Xiaowei
    Kong, Weibo
    Zhang, Yanyan
    Jiang, Liang
    Wang, Jiliang
    Lei, Jingxin
    [J]. RSC ADVANCES, 2015, 5 (84): : 68881 - 68889
  • [10] Solid-solid phase-change materials based on hyperbranched polyurethane for thermal energy storage
    Du, Xiaosheng
    Wang, Haibo
    Wu, Yan
    Du, Zongliang
    Cheng, Xu
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (26)