Local Characterizations for Decomposability of 2-Parameter Persistence Modules

被引:0
|
作者
Botnan, Magnus B. [1 ]
Lebovici, Vadim [2 ]
Oudot, Steve [3 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam, Netherlands
[2] Univ Paris Saclay Orsay, Paris, France
[3] Inria Saclay, Palaiseau, France
关键词
Representation theory; Topological data analysis; Multiparameter persistence; HOMOLOGY;
D O I
10.1007/s10468-022-10189-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the existence of sufficient local conditions under which poset representations decompose as direct sums of indecomposables from a given class. In our work, the indexing poset is the product of two totally ordered sets, corresponding to the setting of 2-parameter persistence in topological data analysis. Our indecomposables of interest belong to the so-called interval modules, which by definition are indicator representations of intervals in the poset. While the whole class of interval modules does not admit such a local characterization, we show that the subclass of rectangle modules does admit one and that it is, in some precise sense, the largest subclass to do so.
引用
收藏
页码:3003 / 3046
页数:44
相关论文
共 50 条
  • [1] Local Characterizations for Decomposability of 2-Parameter Persistence Modules
    Magnus B. Botnan
    Vadim Lebovici
    Steve Oudot
    Algebras and Representation Theory, 2023, 26 : 3003 - 3046
  • [2] On Rectangle-Decomposable 2-Parameter Persistence Modules
    Magnus Bakke Botnan
    Vadim Lebovici
    Steve Oudot
    Discrete & Computational Geometry, 2022, 68 : 1078 - 1101
  • [3] On Rectangle-Decomposable 2-Parameter Persistence Modules
    Botnan, Magnus Bakke
    Lebovici, Vadim
    Oudot, Steve
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (04) : 1078 - 1101
  • [4] EXACT COMPUTATION OF THE MATCHING DISTANCE ON 2-PARAMETER PERSISTENCE MODULES
    Kerber, Michael
    Lesnick, Michael
    Oudot, Steve
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2020, 11 (02) : 4 - 61
  • [5] Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via Zigzag Persistence and Its Applications
    Tamal K. Dey
    Woojin Kim
    Facundo Mémoli
    Discrete & Computational Geometry, 2024, 71 (1) : 67 - 94
  • [6] Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via Zigzag Persistence and Its Applications
    Dey, Tamal K.
    Kim, Woojin
    Memoli, Facundo
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (01) : 67 - 94
  • [7] On interval decomposability of 2D persistence modules
    Asashiba, Hideto
    Buchet, Mickael
    Escolar, Emerson G.
    Nakashima, Ken
    Yoshiwaki, Michio
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 105
  • [8] ASYMPTOTIC IMPROVEMENTS ON THE EXACT MATCHING DISTANCE FOR 2-PARAMETER PERSISTENCE∗
    Bjerkevik, Havard Bakke
    Kerber, Michael
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2023, 14 (01) : 309 - 342
  • [9] GRIL: A 2-parameter Persistence Based Vectorization for Machine Learning
    Xin, Cheng
    Mukherjee, Soham
    Samaga, Shreyas N.
    Dey, Tamal K.
    TOPOLOGICAL, ALGEBRAIC AND GEOMETRIC LEARNING WORKSHOPS 2023, VOL 221, 2023, 221
  • [10] LOCAL MAXIMA OF SAMPLE FUNCTIONS OF 2-PARAMETER WIENER PROCESS
    TRAN, LT
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 58 (JUL) : 250 - 254