Data Augmentation for Neutron Spectrum Unfolding with Neural Networks

被引:0
|
作者
McGreivy, James [1 ,2 ]
Manfredi, Juan J. [3 ]
Siefman, Daniel [2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Livermore Natl Lab, Nucl Crit Safety Div, Livermore, CA 94550 USA
[3] Air Force Inst Technol, Dept Engn Phys, Wright Patterson AFB, Dayton, OH 45433 USA
来源
JOURNAL OF NUCLEAR ENGINEERING | 2023年 / 4卷 / 01期
关键词
detector response unfolding; neutron spectrum unfolding; machine learning; neural network; feature engineering; SIMULATION;
D O I
10.3390/jne4010006
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Neural networks require a large quantity of training spectra and detector responses in order to learn to solve the inverse problem of neutron spectrum unfolding. In addition, due to the under-determined nature of unfolding, non-physical spectra which would not be encountered in usage should not be included in the training set. While physically realistic training spectra are commonly determined experimentally or generated through Monte Carlo simulation, this can become prohibitively expensive when considering the quantity of spectra needed to effectively train an unfolding network. In this paper, we present three algorithms for the generation of large quantities of realistic and physically motivated neutron energy spectra. Using an IAEA compendium of 251 spectra, we compare the unfolding performance of neural networks trained on spectra from these algorithms, when unfolding real-world spectra, to two baselines. We also investigate general methods for evaluating the performance of and optimizing feature engineering algorithms.
引用
下载
收藏
页码:77 / 95
页数:19
相关论文
共 50 条
  • [1] Neutron spectrum unfolding using radial basis function neural networks
    Alvar, Amin Asgharzadeh
    Deevband, Mohammad Reza
    Ashtiyani, Meghdad
    APPLIED RADIATION AND ISOTOPES, 2017, 129 : 35 - 41
  • [2] A neutron spectrum unfolding computer code based on artificial neural networks
    Ortiz-Rodriguez, J. M.
    Reyes Alfaro, A.
    Reyes Haro, A.
    Cervantes Viramontes, J. M.
    Vega-Carrillo, H. R.
    RADIATION PHYSICS AND CHEMISTRY, 2014, 95 : 428 - 431
  • [3] Neutron spectrum unfolding using two architectures of convolutional neural networks
    Bouhadida, Maha
    Mazzi, Asmae
    Brovchenko, Mariya
    Vinchon, Thibaut
    Alaya, Mokhtar Z.
    Monange, Wilfried
    Trompier, Francois
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2023, 55 (06) : 2276 - 2282
  • [4] A neutron spectrum unfolding code based on generalized regression artificial neural networks
    del Rosario Martinez-Blanco, Ma.
    Ornelas-Vargas, Gerardo
    Lizeth Castaneda-Miranda, Celina
    Octavio Solis-Sanchez, Luis
    Castaneda-Miranada, Rodrigo
    Rene Vega-Carrillo, Hector
    Celaya-Padilla, Jose M.
    Garza-Veloz, Idalia
    Martinez-Fierro, Margarita
    Manuel Ortiz-Rodriguez, Jose
    APPLIED RADIATION AND ISOTOPES, 2016, 117 : 8 - 14
  • [5] Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks
    Ido, A. Sharghi
    Bonyadi, M. R.
    Etaati, G. R.
    Shahriari, M.
    APPLIED RADIATION AND ISOTOPES, 2009, 67 (10) : 1912 - 1918
  • [6] Neutron spectrum unfolding based on generalized regression neural networks for neutron fluence and neutron ambient dose equivalent estimations
    Wang, Jie
    Guo, Zhirong
    Chen, Xianglei
    Zhou, Yulin
    APPLIED RADIATION AND ISOTOPES, 2019, 154
  • [7] Synapse. A Neutron Spectrum Unfolding Code Based on Generalized Regression Artificial Neural Networks
    del Rosario Martínez-Blanco, Ma.
    Serrano-Muñoz, Arturo
    Vega-Carrillo, Hector Rene
    de Sousa-Lacerda, Marco Aurelio
    Mendez-Villafañe, Roberto
    Gallego, Eduardo
    del Rio de Santiago, Antonio
    Solis-Sanchez, Luis Octavio
    Ortiz-Rodriguez, Jose Manuel
    EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 2020, 7 (24) : 1 - 14
  • [8] Applications of neural networks for free unfolding of experimental data from fusion neutron spectrometers
    Ronchi, E.
    Conroy, S.
    Sunden, E. Andersson
    Ericsson, G.
    Johnson, M. Gatu
    Hellesen, C.
    Sjostrand, H.
    Weiszflog, M.
    COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 : 29 - 35
  • [9] A neural networks framework for real-time unfolding of neutron spectroscopic data at JET
    Ronchi, E.
    Conroy, S.
    Sunden, E. A.
    Ericsson, G.
    Hjalmarsson, A.
    Hellesen, C.
    Johnson, M. G.
    Weiszflog, M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [10] Nuclear data uncertainty in iterative neutron spectrum unfolding
    Aoki, Katsumi
    Kin, Tadahiro
    Otuka, Naohiko
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2022, 59 (07) : 907 - 914