Durability Performance of Recycled Aggregate Geopolymer Concrete Incorporating Fly Ash and Ground Granulated Blast Furnace Slag

被引:9
|
作者
Gopalakrishna, Banoth [1 ]
Pasla, Dinakar [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Infrastruct, Argul 752050, Odisha, India
关键词
Durability; Recycled aggregate geopolymer concrete (RAGPC); Compressive strength; Sorptivity; Water absorption; Permeability; Scanning electron microscope; X-ray diffraction; Thermogravimetric analysis; A-S-H; DEMOLITION WASTES; CLAY SEDIMENTS; HIGH-VOLUME; CONSTRUCTION; BINDER; CEMENT; MICROSTRUCTURE; PERMEABILITY; METAKAOLIN;
D O I
10.1061/JMCEE7.MTENG-17067
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The construction industry must adopt a sustainable and environmentally friendly approach because it heavily relies on natural resources. To tackle this issue, the utilization of industrial by-products such as fly ash (FA), ground granulated blast furnace slag (GGBS), and recycled aggregates (RAs) from building demolition waste has emerged as a significant sustainable element in the production of recycled aggregate geopolymer concretes (RAGPCs). This study evaluated the durability performance and life-cycle assessment (LCA) of FA-GGBS-based RAGPC adhering to German specifications to optimize aggregate particle packing. Six different mixes of RAGPC were developed with various alkaline-activator content (AAC)/binder (B) ratios, ranging from 0.3 to 0.8. The concrete was cast and then ambient cured until testing. Various tests were carried out to evaluate the performance of RAGPC. The tests included compressive strength, durability, water absorption, and volume of permeable pores. The durability was measured using water sorptivity and water permeability tests. In addition, microstructure characteristics, embodied energy, and global warming potential as part of LCA also were evaluated. It was found that ambient-cured geopolymer concretes demonstrated good strength gain, normal pore structure characteristics, and good durability. Strengths ranging from 30 to 64 MPa can be developed with RA and geopolymer binders. The durability of the RAGPC gel and its capillary porosity resulted in water absorption of less than 10%. The water permeability results indicated reduced penetration. In terms of LCA, the RAGPC had an embodied energy of 4.48% and a global warming potential of 0.083, both of which are significantly lower than those of conventional concrete.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [1] Properties of concrete incorporating fly ash and ground granulated blast-furnace slag
    Li, GY
    Zhao, XH
    CEMENT & CONCRETE COMPOSITES, 2003, 25 (03): : 293 - 299
  • [2] A mix design procedure for fly ash and ground granulated blast furnace slag based treated recycled aggregate concrete
    Biswal, Uma Shankar
    Dinakar, Pasla
    CLEANER ENGINEERING AND TECHNOLOGY, 2021, 5
  • [3] Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag
    Saha, Suman
    Rajasekaran, C.
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 146 : 615 - 620
  • [4] Enhancing the durability performance of thermally damaged concrete with ground-granulated blast furnace slag and fly ash
    Sim, Sungwon
    Rhee, Jeong Hoon
    Oh, Jae-Eun
    Kim, Gun
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 407
  • [5] Bond, durability and microstructural characteristics of ground granulated blast furnace slag based recycled aggregate concrete
    Majhi, R. K.
    Nayak, A. N.
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 212 : 578 - 595
  • [6] Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete
    Reddy, M. Srinivasula
    Dinakar, P.
    Rao, B. Hanumantha
    JOURNAL OF BUILDING ENGINEERING, 2018, 20 : 712 - 722
  • [7] Performance evaluation of fly ash and ground granulated blast furnace slag-based geopolymer concrete: A comparative study
    Yilmazoglu, Arif
    Yildirim, Salih Taner
    Behcet, Omer Faruk
    Yildiz, Sadik
    STRUCTURAL CONCRETE, 2022, 23 (06) : 3898 - 3915
  • [8] Durability of carbonated MgO concrete containing fly ash and ground granulated blast-furnace slag
    Pu, L.
    Unluer, C.
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 192 : 403 - 415
  • [9] A Taguchi Approach for Optimizing Design Mixture of Geopolymer Concrete Incorporating Fly Ash, Ground Granulated Blast Furnace Slag and Silica Fume
    Karthik, Sundaravadivelu
    Mohan, Kaliyaperumal Saravana Raja
    CRYSTALS, 2021, 11 (11)
  • [10] Autogenous shrinkage of fly ash and ground granulated blast furnace slag concrete
    Zhang, Yingda
    Afroz, Sumaiya
    Quang Dieu Nguyen
    Kim, Taehwan
    Duy Nguyen
    Castel, Arnaud
    Nairn, Jason
    Gilbert, Raymond Ian
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (06) : 283 - 295