Constructing MRD codes by switching

被引:2
|
作者
Shi, Minjia [1 ]
Krotov, Denis S. [2 ]
Ozbudak, Ferruh [3 ]
机构
[1] Anhui Univ, Sch Math Sci, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Anhui, Peoples R China
[2] Sobolev Inst Math, Novosibirsk, Russia
[3] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
基金
中国国家自然科学基金;
关键词
bilinear forms graph; MRD codes; rank distance; switching; MAXIMUM RANK DISTANCE; BILINEAR-FORMS;
D O I
10.1002/jcd.21931
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Maximum rank-distance (MRD) codes are (not necessarily linear) maximum codes in the rank-distance metric space on m-by-n matrices over a finite field F-q. They are diameter perfect and have the cardinality q(m(n-d+1)) if m >= n. We define switching in MRD codes as the replacement of special MRD subcodes by other subcodes with the same parameters. We consider constructions of MRD codes admitting switching, such as punctured twisted Gabidulin codes and direct-product codes. Using switching, we construct a huge class of MRD codes whose cardinality grows doubly exponentially in m if the other parameters (n, q, the code distance) are fixed. Moreover, we construct MRD codes with different affine ranks and aperiodic MRD codes.
引用
收藏
页码:219 / 237
页数:19
相关论文
共 50 条
  • [1] On LCD MRD Codes
    Shi, Minjia
    Huang, Daitao
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (09) : 1599 - 1602
  • [2] Codes and Designs Related to Lifted MRD Codes
    Etzion, Tuvi
    Silberstein, Natalia
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) : 1004 - 1017
  • [3] Codes and Designs Related to Lifted MRD Codes
    Silberstein, Natalia
    Etzion, Tuvi
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011,
  • [4] Construction of optimal flag codes by MRD codes
    Liu, Shuangqing
    Yu, Shuhui
    Ji, Lijun
    DESIGNS CODES AND CRYPTOGRAPHY, 2025,
  • [5] On the construction of MRD convolutional codes
    Napp, Diego
    Pinto, Raquel
    Santana, Filipa
    Vela, Carlos
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (16): : 2653 - 2673
  • [6] On dually almost MRD codes
    de la Cruz, Javier
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 53 : 1 - 20
  • [7] Identifiers for MRD-codes
    Giuzzi, Luca
    Zullo, Ferdinando
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 575 : 66 - 86
  • [8] MRD codes with maximum idealizers
    Csajbok, Bence
    Marino, Giuseppe
    Polverino, Olga
    Zhou, Yue
    DISCRETE MATHEMATICS, 2020, 343 (09)
  • [9] ALGEBRAIC STRUCTURES OF MRD CODES
    de la Cruz, Javier
    Kiermaier, Michael
    Wasserman, Alfred
    Willems, Wolfang
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (03) : 499 - 510
  • [10] MRD Rank Metric Convolutional Codes
    Napp, Diego
    Pinto, Raquel
    Rosenthal, Joachim
    Vettori, Paolo
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2766 - 2770