Crises and chaotic transients of a tristable magnetoelastic oscillator

被引:0
|
作者
Chen, J. [1 ,2 ]
Han, H. [1 ,2 ]
Jiang, W. [1 ]
Chen, L. [3 ,4 ]
Bi, Q. [1 ]
机构
[1] Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Changzhou Univ, Sch Mech Engn, Changzhou 213164, Peoples R China
[3] Shanghai Univ, Sch Mech & Engn Sci, Shanghai 200072, Peoples R China
[4] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Tristable; Global analysis; Magnetoelastic; Bifurcation; DUFFING OSCILLATOR; BIFURCATION-ANALYSIS; CELL; DYNAMICS;
D O I
10.1007/s12648-022-02501-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we focus on the global dynamical analysis of a tristable magnetoelastic nonlinear oscillator. The bifurcation diagrams of the excitation amplitude and the excitation frequency are determined by numerical integration, and the largest Lyapunov exponents are carried out by using Wolf's method. Global properties of the systems are emphasized by adopting the generalized cell mapping method. Attractors, saddles, basins of attraction, basin boundaries, and invariant manifolds are plotted. As the excitation amplitude and the excitation frequency increase, the chaotic transients are recorded, and the boundary crises are observed. Furthermore, the validity and rationality of the results from the generalized cell mapping method are verified via directly numerical integration.
引用
收藏
页码:1533 / 1541
页数:9
相关论文
共 50 条
  • [1] Crises and chaotic transients of a tristable magnetoelastic oscillator
    Jiangye Chen
    Hongfang Han
    Wenan Jiang
    Liqun Chen
    Qinsheng Bi
    Indian Journal of Physics, 2023, 97 : 1533 - 1541
  • [2] Chaotic transients and generalized crises of a Duffing-van der Pol oscillator with two external periodic excitations
    Han Qun
    Xu Wei
    Liu Tao
    Liu Li
    ACTA PHYSICA SINICA, 2013, 62 (12)
  • [3] Crises and chaotic transients studied by the generalized cell mapping digraph method
    Hong, L
    Xu, JX
    PHYSICS LETTERS A, 1999, 262 (4-5) : 361 - 375
  • [4] DIRECT OBSERVATION OF CRISES OF THE CHAOTIC ATTRACTOR IN A NON-LINEAR OSCILLATOR
    JEFFRIES, C
    PEREZ, J
    PHYSICAL REVIEW A, 1983, 27 (01): : 601 - 603
  • [5] Dependence of lifetimes of chaotic transients in the weakly dissipative Duffing oscillator on numerical precision and external noise
    Paar, V
    Pavin, N
    PHYSICA A, 1997, 242 (1-2): : 166 - 174
  • [6] Ultrafast magnetoelastic probing of surface acoustic transients
    Janusonis, J.
    Chang, C. L.
    Jansma, T.
    Gatilova, A.
    Vlasov, V. S.
    Lomonosov, A. M.
    Temnov, V. V.
    Tobey, R. I.
    PHYSICAL REVIEW B, 2016, 94 (02)
  • [7] Bifurcation, chaotic and hysteresis phenomena of broadband tristable energy harvesters
    Zhou, Shengxi
    Cao, Junyi
    Litak, Grzegorz
    INTERNATIONAL CONFERENCE ON STRUCTURAL NONLINEAR DYNAMICS AND DIAGNOSIS (CSNDD 2018), 2018, 241
  • [8] New type of boundary crises: chaotic boundary crises
    Hong, L.
    Xu, J.X.
    Wuli Xuebao/Acta Physica Sinica, 2001, 50 (04):
  • [9] SUPER PERSISTENT CHAOTIC TRANSIENTS
    GREBOGI, C
    OTT, E
    YORKE, JA
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1985, 5 (JUN) : 341 - 372
  • [10] STOCHASTIC NOISE AND CHAOTIC TRANSIENTS
    BLACKBURN, JA
    GRONBECHJENSEN, N
    SMITH, HJT
    PHYSICAL REVIEW LETTERS, 1995, 74 (06) : 908 - 911