Comparative Analysis of Intrusion Detection Systems and Machine Learning-Based Model Analysis Through Decision Tree

被引:30
|
作者
Azam, Zahedi [1 ]
Islam, Md. Motaharul [1 ]
Huda, Mohammad Nurul [1 ]
机构
[1] United Int Univ, Dept Comp Sci & Engn, Dhaka 1212, Bangladesh
关键词
Intrusion detection system; machine learning; inductive learning; DDoS attacks; decision tree; supervised and unsupervised learning; FEATURE-SELECTION; ANOMALY DETECTION; SPARSE AUTOENCODER; NEURAL-NETWORKS; DATA ANALYTICS; ENSEMBLE; IOT; CLASSIFICATION; SVM; OPTIMIZATION;
D O I
10.1109/ACCESS.2023.3296444
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cyber-attacks pose increasing challenges in precisely detecting intrusions, risking data confidentiality, integrity, and availability. This review paper presents recent IDS taxonomy, a comprehensive review of intrusion detection techniques, and commonly used datasets for evaluation. It discusses evasion techniques employed by attackers and the challenges in combating them to enhance network security. Researchers strive to improve IDS by accurately detecting intruders, reducing false positives, and identifying new threats. Machine learning (ML) and deep learning (DL) techniques are adopted in IDS systems, showing potential in efficiently detecting intruders across networks. The paper explores the latest trends and advancements in ML and DL-based network intrusion detection systems (NIDS), including methodology, evaluation metrics, and dataset selection. It emphasizes research obstacles and proposes a future research model to address weaknesses in the methodologies. The decision tree, known for its speed and user-friendliness, is proposed as a model for detecting result anomalies, combining findings from a comparative survey. This research aims to provide insights into building an effective decision tree-based detection framework.
引用
收藏
页码:80348 / 80391
页数:44
相关论文
共 50 条
  • [1] Machine Learning-Based Systems for Intrusion Detection in VANETs
    Idris, Hala Eldaw
    Hosni, Ines
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2024, 2024, 1067 : 603 - 614
  • [2] Analysis of Machine Learning Techniques Based Intrusion Detection Systems
    Sharma, Rupam Kr.
    Kalita, Hemanta Kumar
    Borah, Parashjyoti
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND INFORMATICS, ICACNI 2015, VOL 2, 2016, 44 : 485 - 493
  • [3] Machine learning-based intrusion detection for SCADA systems in healthcare
    Öztürk, Tolgahan
    Turgut, Zeynep
    Akgün, Gökçe
    Köse, Cemal
    Network Modeling Analysis in Health Informatics and Bioinformatics, 2022, 11 (01)
  • [4] Effective intrusion detection model through the combination of a signature-based intrusion detection system and a machine learning-based intrusion detection system
    Weon, Ill-Young
    Song, Doo Heon
    Lee, Chang-Hoon
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2006, 22 (06) : 1447 - 1464
  • [5] Machine learning-based intrusion detection for SCADA systems in healthcare
    Ozturk, Tolgahan
    Turgut, Zeynep
    Akgun, Gokce
    Kose, Cemal
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2022, 11 (01):
  • [6] Machine learning-based intrusion detection for SCADA systems in healthcare
    Tolgahan Öztürk
    Zeynep Turgut
    Gökçe Akgün
    Cemal Köse
    Network Modeling Analysis in Health Informatics and Bioinformatics, 2022, 11
  • [7] Machine Learning Techniques for Intrusion Detection: A Comparative Analysis
    Hamid, Yasir
    Sugumaran, M.
    Journaux, Ludovic
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATICS AND ANALYTICS (ICIA' 16), 2016,
  • [8] Intrusion Detection System: A Comparative Study of Machine Learning-Based IDS
    Singh, Amit
    Prakash, Jay
    Kumar, Gaurav
    Jain, Praphula Kumar
    Ambati, Loknath Sai
    JOURNAL OF DATABASE MANAGEMENT, 2024, 35 (01)
  • [9] Recursive Feature Elimination with Cross-Validation with Decision Tree: Feature Selection Method for Machine Learning-Based Intrusion Detection Systems
    Awad, Mohammed
    Fraihat, Salam
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2023, 12 (05)
  • [10] Machine learning-based intrusion detection algorithms
    Tang, Hua
    Cao, Zhuolin
    Journal of Computational Information Systems, 2009, 5 (06): : 1825 - 1831