Hydrodynamic Groundwater Modeling and Hydrochemical Conceptualization of the Closure Mining Area of the WuMa River Watershed of China

被引:2
|
作者
Yang, Lei [1 ]
Liu, Lang [2 ,3 ]
Liu, Yuan [4 ]
Chen, Guangping [5 ]
Liang, Liying [2 ,3 ,6 ]
机构
[1] China Univ Min & Technol, Sch Geosci & Surveying Engn, Beijing 100083, Peoples R China
[2] Guangxi Minzu Univ, Sch Mat & Environm, Nanning 530000, Peoples R China
[3] Guangxi Minzu Univ, Sch Mat & Environm, Guangxi Coll & Univ Key Lab Environm Friendly Mat, Guangxi Key Lab Adv Struct Mat & Carbon Neutraliza, Nanning 530105, Peoples R China
[4] Guizhou Environm & Engn Appraisal Ctr, Guiyang 550002, Guizhou, Peoples R China
[5] Guizhou ZhongGui Environm Technol Co Ltd, Guiyang 550008, Peoples R China
[6] Guangxi Chem Res Inst Ltd Co, Nanning 530000, Peoples R China
来源
ACS OMEGA | 2023年 / 9卷 / 01期
关键词
COAL-MINE; CONTAMINATION; SYSTEM; MANGANESE; REGIONS; QUALITY; BASIN;
D O I
10.1021/acsomega.3c05631
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The WuMa River (WMR) watershed is located in Renhuai City, Guizhou Province of China, which is a first-class tributary of the Chishui River. The geochemical investigation mainly included the determination of groundwater pH, total hardness, total dissolution solid, major cationic and anionic, and the geochemical groundwater modeling. The principal component analysis (PCA) and Gibbs model were used to analyze the pollution type and geochemical composition. The geochemical investigation results show that the cations of groundwater are dominated by Ca2+ and the anions are dominated by HCO3-; therefore, two main hydrochemical types in the study area are identified as Ca2+-Mg2+-HCO3- and Ca2+-Mg2+-SO42-. The chemical composition of groundwater in this area is mainly controlled by weathering of the carbonate rocks. The ion concentration of groundwater in the study area exhibited significant spatial variability between dry and wet seasons, while temporal changes of cationic and anionic concentrations exhibited irregularities. In PCA and FA analysis, PC1, PC2, and PC3 were extracted, which could explain 51.92, 26.98, and 12.61% of the total information, respectively. F1 explained 67.44% of the total variance, among which Ca2+, Mg2+, K+, SO42-, and Cl- contributed the most among the factors and were the main factors controlling the chemical composition of groundwater. The relative error between the measured water level and the simulated water level is less than 2%, which meets the requirements of simulation accuracy. During the simulation period of the model, a total recharge of 339.05 x 10(4) m(3) was observed in the simulated area, primarily attributed to infiltration from rainfall. The total excretion amounted to 330.78 x 10(4) m(3), primarily through evaporation, with a minor amount of lateral outflow. The migration pathway of pollutants in groundwater primarily follows the direction of groundwater flow while diffusing vertically. The migration range of the pollutant is in accordance with the direction of groundwater flow and extends along the larger hydraulic gradient, demonstrating consistency. The findings of this study serve as a reminder that the closure of coal mines can constitute a significant source of water pollution. Simultaneously, they offer empirical data and theoretical references for the simulation and prediction of groundwater contamination in enclosed coal mines.
引用
收藏
页码:520 / 537
页数:18
相关论文
共 50 条
  • [1] Hydrodynamic groundwater modeling and hydrochemical conceptualization of the mining area of Moulares Redeyef (southwestern of Tunisia): New local insights
    Hamdi, Mohamed
    Goïta, Kalifa
    Karaouli, Fatma
    Zagrarni, Mohamed Faouzi
    [J]. Physics and Chemistry of the Earth, 2021, 121
  • [2] Hydrodynamic groundwater modeling and hydrochemical conceptualization of the mining area of Moulares Redeyef (southwestern of Tunisia): New local insights
    Hamdi, Mohamed
    Goita, Kalifa
    Karaouli, Fatma
    Zagrarni, Mohamed Faouzi
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH, 2021, 121
  • [3] Hydrochemical Evolution and Nitrate Source Identification of River Water and Groundwater in Huashan Watershed, China
    Li, Xue
    Lin, Jin
    Zhang, Lu
    Han, Jiangbo
    Dai, Yunfeng
    Min, Xing
    Wang, Huirong
    [J]. SUSTAINABILITY, 2024, 16 (01)
  • [4] Hydrochemical processes and groundwater quality assessment in Yushenfu mining area, Northwest China
    Liu, Ji
    Gao, Min
    Wang, Tiantian
    Yang, Jian
    Wang, Qiangmin
    [J]. DESALINATION AND WATER TREATMENT, 2019, 165 : 177 - 187
  • [5] Hydrochemical and isotopic evaluation of groundwater and river water in the transboundary Silala River watershed
    Aravena, Ramon
    Herrera, Christian
    Urrutia, Javier
    [J]. WILEY INTERDISCIPLINARY REVIEWS-WATER, 2024, 11 (01):
  • [6] Hydrochemical characteristics and geochemistry evolution of groundwater in the plain area of the Lake Baiyangdian watershed, North China Plain
    Zhang Yu-qin
    Wang Guang-wei
    Wang Shi-qin
    Yuan Rui-qiang
    Tang Chang-yuan
    Song Xian-fang
    [J]. JOURNAL OF GROUNDWATER SCIENCE AND ENGINEERING, 2018, 6 (03): : 220 - 233
  • [7] Stable isotope and hydrochemical evolution of shallow groundwater in mining area of the Changzhi Basin, northern China
    Zhang, Chunchao
    Li, Xiangquan
    Ma, Jianfei
    Wang, Zhenxing
    Hou, Xinwei
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2022, 81 (10)
  • [8] Stable isotope and hydrochemical evolution of shallow groundwater in mining area of the Changzhi Basin, northern China
    Chunchao Zhang
    Xiangquan Li
    Jianfei Ma
    Zhenxing Wang
    Xinwei Hou
    [J]. Environmental Earth Sciences, 2022, 81
  • [9] Hydrochemical Characteristics and Water Quality Evaluation of Groundwater in the Luohe Formation of Binchang Mining Area, China
    Wang, Xu
    Sun, Kui
    Ma, Wanchao
    Peng, Jie
    Liu, Ruiping
    Chen, Jianping
    Zhang, Kun
    Gao, Shuai
    Li, Cheng
    Zhang, Penghua
    [J]. WATER, 2024, 16 (13)
  • [10] Hydrochemical characteristics and formation mechanism of groundwater in Yushenfu Mining Area
    Fan, Limin
    Ma, Wanchao
    Chang, Bofeng
    Sun, Kui
    Miao, Yanping
    Lu, Bo
    Tian, Shuibao
    Yang, Lei
    [J]. Meitan Kexue Jishu/Coal Science and Technology (Peking), 2023, 51 (01): : 383 - 394