Decomposition of an integrally convex set into a Minkowski sum of bounded and conic integrally convex sets

被引:0
|
作者
Murota, Kazuo [1 ,2 ]
Tamura, Akihisa [3 ]
机构
[1] Inst Stat Math, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, Japan
[2] Tokyo Metropolitan Univ, Fac Econ & Business Adm, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan
[3] Keio Univ, Dept Math, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
基金
日本学术振兴会;
关键词
Discrete convex analysis; Integrally convex set; L-(sic)-convex set; M-(sic)-convex set; Minkowski sum; Characteristic cone;
D O I
10.1007/s13160-023-00635-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Every polyhedron can be decomposed into a Minkowski sum (or vector sum) of a bounded polyhedron and a polyhedral cone. This paper establishes similar statements for some classes of discrete sets in discrete convex analysis, such as integrally convex sets, L-(sic)-convex sets, and M-(sic)-convex sets.
引用
收藏
页码:987 / 1011
页数:25
相关论文
共 50 条
  • [1] Decomposition of an integrally convex set into a Minkowski sum of bounded and conic integrally convex sets
    Kazuo Murota
    Akihisa Tamura
    Japan Journal of Industrial and Applied Mathematics, 2024, 41 : 987 - 1011
  • [2] MINKOWSKI DECOMPOSITION OF CONVEX SETS
    SALLEE, GT
    ISRAEL JOURNAL OF MATHEMATICS, 1972, 12 (03) : 266 - &
  • [3] An outer approximation of the Minkowski sum of convex conic sets with application to demand response
    Barot, Suhail
    Taylor, Josh A.
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 4233 - 4238
  • [4] Shapley-Folkman-type theorem for integrally convex sets
    Murota, Kazuo
    Tamura, Akihisa
    DISCRETE APPLIED MATHEMATICS, 2025, 360 : 42 - 50
  • [5] Recent progress on integrally convex functions
    Murota, Kazuo
    Tamura, Akihisa
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (03) : 1445 - 1499
  • [6] Recent progress on integrally convex functions
    Kazuo Murota
    Akihisa Tamura
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 1445 - 1499
  • [7] Scaling, proximity, and optimization of integrally convex functions
    Moriguchi, Satoko
    Murota, Kazuo
    Tamura, Akihisa
    Tardella, Fabio
    MATHEMATICAL PROGRAMMING, 2019, 175 (1-2) : 119 - 154
  • [8] Integrality of subgradients and biconjugates of integrally convex functions
    Murota, Kazuo
    Tamura, Akihisa
    OPTIMIZATION LETTERS, 2020, 14 (01) : 195 - 208
  • [9] Scaling, proximity, and optimization of integrally convex functions
    Satoko Moriguchi
    Kazuo Murota
    Akihisa Tamura
    Fabio Tardella
    Mathematical Programming, 2019, 175 : 119 - 154
  • [10] Discrete Fenchel duality for a pair of integrally convex and separable convex functions
    Murota, Kazuo
    Tamura, Akihisa
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2022, 39 (02) : 599 - 630