ON THE TWO-DIMENSIONAL JACOBIAN CONJECTURE: MAGNUS' FORMULA REVISITED, I

被引:0
|
作者
Hurst, William E. [1 ]
Lee, Kyungyong [1 ,2 ]
Li, Li [3 ]
Nasr, George D. [4 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[2] Korea Inst Adv Study, Seoul, South Korea
[3] Oakland Univ, Dept Math & Stat, Rochester, MI USA
[4] Augustana Univ, Dept Math, Sioux Falls, SD USA
关键词
Jacobian conjecture; Newton polygon; Magnus' formula;
D O I
10.1216/rmj.2023.53.791
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an algebraically closed field of characteristic 0. For f, g & ISIN; K[x, y], when the Jacobian ( partial differential f / partial differential x)( partial differential g/ partial differential y) - ( partial differential g/ partial differential x)( partial differential f / partial differential y) is a constant, Magnus' formula describes the relations between the homogeneous degree pieces fi and gi. We show a more general version of Magnus' formula, which could provide a potentially useful tool to prove the Jacobian conjecture.
引用
收藏
页码:791 / 806
页数:16
相关论文
共 50 条
  • [1] JACOBIAN CONJECTURE, TWO-DIMENSIONAL CASE
    Starkov, V. V.
    [J]. PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2016, 5 (02): : 69 - 78
  • [2] New sufficient condition for the two-dimensional real Jacobian conjecture through the Newton diagram
    Tian, Yuzhou
    Cen, Xiuli
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 410 : 171 - 196
  • [3] Magnus Hall Effect in Two-Dimensional Materials
    Xiao, Rui-Chun
    Wang, Zibo
    Zhang, Zhi-Qiang
    Liu, Junwei
    Jiang, Hua
    [J]. CHINESE PHYSICS LETTERS, 2021, 38 (05)
  • [4] Magnus Hall Effect in Two-Dimensional Materials
    肖瑞春
    王孜博
    张智强
    刘军伟
    江华
    [J]. Chinese Physics Letters, 2021, 38 (05) : 90 - 97
  • [5] Two-dimensional exciton revisited
    Parfitt, DGW
    Portnoi, ME
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 17 (1-4): : 212 - 214
  • [6] Magnus force in discrete and continuous two-dimensional superfluids
    Gecse, Z
    Khlebnikov, S
    [J]. PHYSICAL REVIEW B, 2005, 72 (05)
  • [7] EQUIVARIANT JACOBIAN CONJECTURE IN DIMENSION TWO
    Miyanishi, Masayoshi
    [J]. TRANSFORMATION GROUPS, 2023, 28 (02) : 951 - 971
  • [8] EQUIVARIANT JACOBIAN CONJECTURE IN DIMENSION TWO
    MASAYOSHI MIYANISHI
    [J]. Transformation Groups, 2023, 28 : 951 - 971
  • [9] On two recent views of the Jacobian Conjecture
    Kambayashi, T
    Miyanishi, M
    [J]. AFFINE ALGEBRAIC GEOMETRY, 2005, 369 : 113 - 138
  • [10] A SIMPLE FORMULA FOR TWO-DIMENSIONAL CAPACITANCE
    CETNER, A
    INIEWSKI, K
    JAKUBOWSKI, A
    [J]. SOLID-STATE ELECTRONICS, 1988, 31 (05) : 973 - 974