Updated constraints on sterile neutrino mixing in the OPERA experiment using a new νe identification method

被引:1
|
作者
Agafonova, N.
Alexandrov, A.
Anokhina, A.
Aoki, S.
Ariga, A.
Ariga, T.
Bertolin, A.
Bozza, C.
Brugnera, R.
Buontempo, S.
Chernyavskiy, M.
Chukanov, A.
Consiglio, L.
D'Ambrosio, N.
De Lellis, G.
De Serio, M.
Sanchez, P. del Amo
Di Crescenzo, A.
Di Ferdinando, D.
Di Marco, N.
Dmitrievsky, S.
Dracos, M.
Duchesneau, D.
Dusini, S.
Dzhatdoev, T.
Ebert, J.
Ereditato, A.
Fini, R. A.
Fukuda, T.
Galati, G.
Garfagnini, A.
Gentile, V.
Goldberg, J.
Gorbunov, S.
Gornushkin, Y.
Grella, G.
Guler, A. M.
Gustavino, C.
Hagner, C.
Hara, T.
Hayakawa, T.
Hollnagel, A.
Ishiguro, K.
Iuliano, A.
Jakovcc, K.
Jollet, C.
Kamiscioglu, C.
Kamiscioglu, M.
Kim, S. H.
Kitagawa, N.
机构
[1] INR – Institute for Nuclear Research, The Russian Academy of Sciences, Moscow
[2] INFN Sezione di Napoli, Napoli
[3] SINP MSU – Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow
[4] Kobe University, Kobe
[5] Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Bern
[6] Faculty of Arts and Science, Kyushu University, Fukuoka
[7] INFN Sezione di Padova, Padova
[8] Dipartimento di Fisica dell’Università di Salerno and “Gruppo Collegato, INFN, Salerno, Fisciano
[9] Dipartimento di Fisica e Astronomia dell’Università di Padova, Padova
[10] LPI – Lebedev Physical Institute, The Russian Academy of Sciences, Moscow
[11] JINR – Joint Institute for Nuclear Research, Dubna
[12] INFN – Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila)
[13] Dipartimento di Fisica dell’Università Federico II di Napoli, Napoli
[14] CERN, European Organization for Nuclear Research, Geneva
[15] Dipartimento di Fisica dell’Università di Bari, Bari
[16] INFN Sezione di Bari, Bari
[17] LAPP, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy-le-Vieux
[18] INFN Sezione di Bologna, Bologna
[19] IPHC, Université de Strasbourg, CNRS, IN2P3, Strasbourg
[20] Hamburg University, Hamburg
[21] Nagoya University, Nagoya
[22] GSSI, Gran Sasso Science Institute, L’Aquila
[23] Department of Physics, Technion, Haifa
[24] METU, Middle East Technical University, Ankara
[25] INFN Sezione di Roma, Roma
[26] Rudj er Bošković Institute, Zagreb
[27] Ankara University, Ankara
[28] Gyeongsang National University, Jinju-daero, Jinju
[29] Center of Excellence for Advanced Materials and Sensing Devices, Ruder Boškovć Institute, Zagreb
[30] Aichi University of Education, Kariya (Aichi-Ken)
[31] Toho University, Funabashi
[32] Dipartimento di Fisica e Astronomia dell’Università di Bologna, Bologna
[33] Nihon University, Chiba, Narashino
[34] INFN, Laboratori Nazionali di Frascati dell’INFN, Frascati, Roma
[35] MEPhI, Moscow Engineering Physics Institute, Moscow
[36] Dipartimento di Fisica dell’Università di Milano-Bicocca, Milano
[37] IIHE, Université Libre de Bruxelles, Brussels
来源
基金
新加坡国家研究基金会;
关键词
D O I
10.1093/ptep/ptad012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper describes a new v(e) identification method specifically designed to improve the low-energy (< 30 GeV) nu(e) identification efficiency attained by enlarging the emulsion film scanning volume with the next-generation emulsion readout system. A relative increase of 25-70% in the nu(e) low-energy region is expected, leading to improvements in the OPERA sensitivity to neutrino oscillations in the framework of the 3 + 1 model. The method is applied to a subset of data where the detection efficiency increase is expected to be more relevant, and one additional nu(e) candidate is found. The analysis combined with the nu(tau) appearance results improves the upper limit on sin (2)2 theta(mu e) to 0.016 at 90% C.L. in the Mini-BooNE allowed region Delta m(41)(2) similar to 0.3 eV(2).
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Constraints on sterile neutrino mixing using IceCube atmospheric neutrino data
    Razzaque, Soebur
    Miranda, Luis Salvador
    36TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2019, 2021,
  • [2] First Constraints on the Complete Neutrino Mixing Matrix with a Sterile Neutrino
    Collin, G. H.
    Arguelles, C. A.
    Conrad, J. M.
    Shaevitz, M. H.
    PHYSICAL REVIEW LETTERS, 2016, 117 (22)
  • [3] Search for sterile neutrino mixing in the νμ → ντ appearance channel with the OPERA detector
    Mauri, N.
    4TH INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS, 2016, 126
  • [4] Updated results of the OPERA long baseline neutrino experiment
    Chukanov, Artem
    12TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2011), PTS 1-6, 2012, 375
  • [5] Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector
    Di Crescenzo, A.
    XIV INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2015), PTS 1-7, 2016, 718
  • [6] The Result of the Neutrino-4 Experiment and the Cosmological Constraints on the Sterile Neutrino
    A. P. Serebrov
    R. M. Samoilov
    O. M. Zherebtsov
    Physics of Atomic Nuclei, 2023, 86 : 1394 - 1401
  • [7] The Result of the Neutrino-4 Experiment and the Cosmological Constraints on the Sterile Neutrino
    Serebrov, A. P.
    Samoilov, R. M.
    Zherebtsov, O. M.
    PHYSICS OF ATOMIC NUCLEI, 2023, 86 (06) : 1394 - 1401
  • [8] Active-sterile neutrino mixing constraints using reactor antineutrinos with the ISMRAN setup
    Behera, S. P.
    Mishra, D. K.
    Pant, L. M.
    PHYSICAL REVIEW D, 2020, 102 (01):
  • [9] Result of the Neutrino-4 Experiment and the Cosmological Constraints on the Sterile Neutrino (Brief Review)
    A. P. Serebrov
    R. M. Samoilov
    M. E. Chaikovskii
    O. M. Zherebtsov
    JETP Letters, 2022, 116 : 669 - 682
  • [10] Constraints on active-sterile neutrino mixing from primordial abundances
    Mosquera, M. E.
    Civitarese, O.
    PHYSICAL REVIEW C, 2011, 84 (06):