Planetary system architectures with low-mass inner planets

被引:0
|
作者
Desgrange, C. [1 ,2 ]
Milli, J. [1 ]
Chauvin, G. [3 ]
Henning, Th. [2 ]
Luashvili, A. [4 ]
Read, M. [5 ]
Wyatt, M. [6 ]
Kennedy, G. [7 ,8 ]
Burn, R. [2 ]
Schlecker, M. [9 ]
Kiefer, F. [10 ]
D'Orazi, V. [11 ,12 ]
Messina, S. [13 ]
Rubini, P. [14 ]
Lagrange, A. -m. [10 ]
Babusiaux, C. [1 ]
Matra, L. [15 ]
Bitsch, B. [2 ]
Bonavita, M. [12 ,16 ]
Delorme, P. [1 ]
Matthews, E. [2 ]
Palma-Bifani, P. [3 ]
Vigan, A. [17 ]
机构
[1] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
[2] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[3] Univ Cote Azur, CNRS, UMR7293, Lab Lagrange,Observ Cote Azur, Blvd Observ, F-06304 Nice, France
[4] Univ Paris Cite, Univ PSL, CNRS, Lab Univers & Theories,Observ Paris, F-92190 Meudon, France
[5] Univ Bern, Phys Inst, Space Res & Planetol Div, Bern, Switzerland
[6] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
[7] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, England
[8] Univ Warwick, Ctr Exoplanets & Habitabil, Gibbet Hill Rd, Coventry CV4 7AL, England
[9] Univ Arizona, Steward Observ, Dept Astron, 933 North Cherry Ave, Tucson, AZ 85721 USA
[10] Univ PSL, Sorbonne Univ, Univ Paris, CNRS,LESIA,Observ Paris, 5 Pl Jules Janssen, F-92195 Meudon, France
[11] Univ Roma Tor Vergata, Dept Phys, Via Ric Scientif 1, I-00133 Rome, Italy
[12] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy
[13] INAF Osservatorio Astrofisico Catania, via St Sofia,78 Catania, Catania, Italy
[14] Pixyl, 5 Ave Grand Sablon, F-38700 La Tronche, France
[15] Univ Dublin, Trinity Coll Dublin, Sch Phys, Coll Green, Dublin, Ireland
[16] Open Univ, Sch Phys Sci, Walton Hall, Milton Keynes MK7 6AA, England
[17] Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
基金
欧洲研究理事会; 美国国家航空航天局;
关键词
planetary systems; instrumentation: adaptive optics; instrumentation: high angular resolution; methods: observational; EXTRA-SOLAR PLANETS; INFRARED INTERFEROMETRIC SURVEY; HOT SUPER-EARTHS; M-DWARF STARS; M-CIRCLE-PLUS; CA-II H; ULTRAVIOLET-RADIATION ENVIRONMENT; MAIN-SEQUENCE STARS; GAS GIANT PLANETS; IN-SITU FORMATION;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The discovery of planets orbiting at less than 1 au from their host star and less massive than Saturn in various exoplanetary systems revolutionized our theories of planetary formation. The fundamental question is whether these close-in low-mass planets could have formed in the inner disk interior to 1 au, or whether they formed further out in the planet-forming disk and migrated inward. Exploring the role of additional giant planet(s) in these systems may help us to pinpoint their global formation and evolution. Aims. We searched for additional substellar companions by using direct imaging in systems known to host close-in small planets. The use of direct imaging complemented by radial velocity and astrometric detection limits enabled us to explore the giant planet and brown dwarf demographics around these hosts to investigate the potential connection between both populations. Methods. We carried out a direct imaging survey with SPHERE at VLT to look for outer giant planets and brown dwarf companions in 27 systems hosting close-in low-mass planets discovered by radial velocity. Our sample is composed of very nearby (<20 pc) planetary systems, orbiting G-, K-, and M-type mature (0.5-10 Gyr) stellar hosts. We performed homogeneous direct imaging data reduction and analysis to search for and characterize point sources, and derived robust statistical detection limits. The final direct imaging detection performances were globally considered together with radial velocity and astrometric sensitivity. Results. Of 337 point-source detections, we do not find any new bound companions. We recovered the emblematic very cool T-type brown dwarf GJ 229 B. Our typical sensitivities in direct imaging range from 5 to 30 M-Jup beyond 2 au. The non-detection of massive companions is consistent with predictions based on models of planet formation by core accretion. Our pilot study opens the way to a multi-technique approach for the exploration of very nearby exoplanetary systems with future ground-based and space observatories.
引用
收藏
页数:46
相关论文
共 50 条
  • [1] Planetary system architectures with low-mass inner planets Direct imaging exploration of mature systems beyond 1 au
    Desgrange, C.
    Milli, J.
    Chauvin, G.
    Henning, Th.
    Luashvili, A.
    Read, M.
    Wyatt, M.
    Kennedy, G.
    Burn, R.
    Schlecker, M.
    Kiefer, F.
    D'Orazi, V.
    Messina, S.
    Rubini, P.
    Lagrange, A. -M.
    Babusiaux, C.
    Matra, L.
    Bitsch, B.
    Bonavita, M.
    Delorme, P.
    Matthews, E.
    Palma-Bifani, P.
    Vigan, A.
    ASTRONOMY & ASTROPHYSICS, 2023, 680
  • [2] Planetary system architectures with low-mass inner planets: Direct imaging exploration of mature systems beyond 1 au
    Desgrange C.
    Milli J.
    Chauvin G.
    Henning T.
    Luashvili A.
    Read M.
    Wyatt M.
    Kennedy G.
    Burn R.
    Schlecker M.
    Kiefer F.
    D'Orazi V.
    Messina S.
    Rubini P.
    Lagrange A.-M.
    Babusiaux C.
    Matrà L.
    Bitsch B.
    Bonavita M.
    Delorme P.
    Matthews E.
    Palma-Bifani P.
    Vigan A.
    Astronomy and Astrophysics, 2023, 680
  • [3] Trapping Low-mass Planets at the Inner Edge of the Protostellar Disk
    Brasser, R.
    Matsumura, S.
    Muto, T.
    Ida, S.
    ASTROPHYSICAL JOURNAL LETTERS, 2018, 864 (01)
  • [4] Trapping of low-mass planets outside the truncated inner edges of protoplanetary discs
    Miranda, Ryan
    Lai, Dong
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 473 (04) : 5267 - 5274
  • [5] Inflated Planets and Their Low-Mass Companions
    Mardling, Rosemary A.
    EXTREME SOLAR SYSTEMS, 2008, 398 : 529 - 532
  • [6] The quest for very low-mass planets
    Mayor, M.
    Udry, S.
    PHYSICA SCRIPTA, 2008, T130
  • [7] Eccentricity Versus Mass for Low-Mass Secondaries and Planets
    Mazeh, T.
    Mayor, M.
    Latham, D. W.
    Astrophysical Journal, 478 (01):
  • [8] Eccentricity versus mass for low-mass secondaries and planets
    Mazeh, T
    Mayor, M
    Latham, DW
    ASTROPHYSICAL JOURNAL, 1997, 478 (01): : 367 - 373
  • [9] Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems
    Lovis, C.
    DETECTION AND DYNAMICS OF TRANSITING EXOPLANETS, 2011, 11
  • [10] On the corotation torque for low-mass eccentric planets
    Fendyke, Stephen M.
    Nelson, Richard P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (01) : 96 - 107