Spectral bounds for the vulnerability parameters of graphs

被引:0
|
作者
Chen, Hongzhang [1 ]
Li, Jianxi [2 ]
Shiu, Wai Chee [3 ]
机构
[1] Lanzhou Univ, Gansu Ctr Appl Math, Sch Math & Stat, Lanzhou, Gansu, Peoples R China
[2] Minnan Normal Univ, Sch Math & Stat, Zhangzhou, Fujian, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 02期
关键词
Scattering number; Integrity; Tenacity; Signless Laplacian spectral radius; (Normalized) Laplacian eigenvalues; SCATTERING NUMBER; CONNECTIVITY; EIGENVALUES; TOUGHNESS; INTEGRITY;
D O I
10.1007/s40314-024-02595-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The scattering number, integrity, and tenacity are preferred for evaluating the vulnerability and reliability of a communication network. In this paper, we establish a tight signless Laplacian spectral radius condition to guarantee the scattering number of a connected graph G with the minimum degree delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} to be at most zero. As well as new tight bounds for the integrity and tenacity of graphs in terms of their (normalized) Laplacian eigenvalues are also included. Our results extend the corresponding results on regular graphs due to Li et al. (Future Gener Comput Syst 83:450-453, 2018), respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Spectral bounds for the vulnerability parameters of graphs
    Hongzhang Chen
    Jianxi Li
    Wai Chee Shiu
    Computational and Applied Mathematics, 2024, 43
  • [2] Vulnerability Parameters in Neutrosophic Graphs
    Jaikumar, R.V.
    Sundareswaran, R.
    Balaraman, G.
    Kumar, P K Kishore
    Broumi, Said
    Neutrosophic Sets and Systems, 2022, 48 : 109 - 121
  • [3] Vulnerability parameters of split graphs
    Li, Yinkui
    Zhang, Shenggui
    Zhang, Qilong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (01) : 19 - 23
  • [4] A function on bounds of the spectral radius of graphs
    Hu, Shengbiao
    ARS COMBINATORIA, 2010, 96 : 115 - 128
  • [5] Bounds for the Laplacian spectral radius of graphs
    Liu, Huiqing
    Lu, Mei
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (01): : 113 - 119
  • [6] A note on the bounds for the spectral radius of graphs
    Filipovski, Slobodan
    Stevanovic, Dragan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 667 : 1 - 9
  • [7] Metric Uniformization and Spectral Bounds for Graphs
    Kelner, Jonathan A.
    Lee, James R.
    Price, Gregory N.
    Teng, Shang-Hua
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (05) : 1117 - 1143
  • [8] Metric Uniformization and Spectral Bounds for Graphs
    Jonathan A. Kelner
    James R. Lee
    Gregory N. Price
    Shang-Hua Teng
    Geometric and Functional Analysis, 2011, 21 : 1117 - 1143
  • [9] Bounds on the (Laplacian) spectral radius of graphs
    Shi, Lingsheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) : 755 - 770
  • [10] Wiener index and vulnerability parameters of graphs
    Yatauro, Michael
    DISCRETE APPLIED MATHEMATICS, 2023, 338 : 56 - 68