EVOLUTION EQUATIONS ON TIME-DEPENDENT LEBESGUE SPACES WITH VARIABLE EXPONENTS

被引:0
|
作者
Simsen, Jacson [1 ]
机构
[1] Univ Fed Itajuba, Inst Matemat & Computacao, BR-37500903 Itajuba, MG, Brazil
关键词
Non-autonomous parabolic problems; variable exponents; p-Laplacian; pullback attractors; upper semicontinuity; PULLBACK ATTRACTORS; EXISTENCE;
D O I
10.58997/ejde.2023.50
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the results in Kloeden-Simsen [CPAA 2014] to p(x, t)-Laplacian problems on time-dependent Lebesgue spaces with variable expo-nents. We study the equation partial differential uA (t) div (DA(t, x)|vuA(t)|p(x,t)-2vuA(t)) + |uA(t)|p(x,t)-2uA(t) partial differential t = B(t, uA(t)) on a bounded smooth domain & omega; in R , n> 1, with a homogeneous Neumann boundary condition, where the exponent p(& BULL;) E C(& omega; over bar x [& tau;, T], R+) satisfies min p(x, t) > 2, and & lambda; E [0, oo) is a parameter.We establish the existence and upper semicontinuity of pullback attractors for this equation under the assumption, amongst others, that B is globally Lipschitz in its second variable and DA E L & INFIN;([& tau;, T] x & omega;, R+) is bounded from above and below, monotonically nonincreasing in time and continuous in the parameter & lambda;.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Examining Nonlinear Fredholm Equations in Lebesgue Spaces with Variable Exponents
    Bachar, Mostafa
    Khamsi, Mohamed A.
    Mendez, Osvaldo
    [J]. SYMMETRY-BASEL, 2023, 15 (11):
  • [2] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [3] Extension of a result by Lindquist to Lebesgue spaces with variable exponents
    Lang, Jan
    Mendez, Osvaldo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (02) : 562 - 595
  • [4] ON THE BASICITY FROM EXPONENTS IN LEBESGUE SPACES WITH VARIABLE EXPONENT
    Bilalov, B. T.
    Huseynov, Z. G.
    [J]. TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 1 (01): : 14 - 23
  • [5] Generalized Almost Periodicity in Lebesgue Spaces with Variable Exponents
    Kostic, Marko
    Du, Wei-Shih
    [J]. MATHEMATICS, 2020, 8 (06)
  • [6] Polynomial Inequalities in Lebesgue Spaces with Variable Exponents on the Sphere
    Hongwei Huang
    Heping Wang
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [7] The Variation of Constants Formula in Lebesgue Spaces with Variable Exponents
    Bachar, Mostafa
    [J]. SYMMETRY-BASEL, 2024, 16 (08):
  • [8] Mixed norm Lebesgue spaces with variable exponents and applications
    Ho, Kwok-Pun
    [J]. RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2018, 9 (01): : 21 - 44
  • [9] Polynomial Inequalities in Lebesgue Spaces with Variable Exponents on the Sphere
    Huang, Hongwei
    Wang, Heping
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [10] On Quasilinear Anisotropic Parabolic Equations with Time-Dependent Exponents
    Al. S. Tersenov
    Ar. S. Tersenov
    [J]. Siberian Mathematical Journal, 2020, 61 : 159 - 177