UN-YOLOv5s: A UAV-Based Aerial Photography Detection Algorithm

被引:10
|
作者
Guo, Junmei [1 ]
Liu, Xingchen [1 ]
Bi, Lingyun [1 ]
Liu, Haiying [1 ]
Lou, Haitong [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Informat & Automat Engn, Jinan 250353, Peoples R China
关键词
YOLOv5; artificial intelligence; target detection; aerial image;
D O I
10.3390/s23135907
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the progress of science and technology, artificial intelligence is widely used in various disciplines and has produced amazing results. The research of the target detection algorithm has significantly improved the performance and role of unmanned aerial vehicles (UAVs), and plays an irreplaceable role in preventing forest fires, evacuating crowded people, surveying and rescuing explorers. At this stage, the target detection algorithm deployed in UAVs has been applied to production and life, but making the detection accuracy higher and better adaptability is still the motivation for researchers to continue to study. In aerial images, due to the high shooting height, small size, low resolution and few features, it is difficult to be detected by conventional target detection algorithms. In this paper, the UN-YOLOv5s algorithm can solve the difficult problem of small target detection excellently. The more accurate small target detection (MASD) mechanism is used to greatly improve the detection accuracy of small and medium targets, The multi-scale feature fusion (MCF) path is combined to fuse the semantic information and location information of the image to improve the expression ability of the novel model. The new convolution SimAM residual (CSR) module is introduced to make the network more stable and focused. On the VisDrone dataset, the mean average precision (mAP) of UAV necessity you only look once v5s(UN-YOLOv5s) is 8.4% higher than that of the original algorithm. Compared with the same version, YOLOv5l, the mAP is increased by 2.2%, and the Giga Floating-point Operations Per Second (GFLOPs) is reduced by 65.3%. Compared with the same series of YOLOv3, the mAP is increased by 1.8%, and GFLOPs is reduced by 75.8%. Compared with the same series of YOLOv8s, the detection accuracy of the mAP is improved by 1.1%.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Small Target Detection Algorithm for UAV Aerial Photography Based on Improved YOLOv5s
    Shang, Jingcheng
    Wang, Jinsong
    Liu, Shenbo
    Wang, Chen
    Zheng, Bin
    ELECTRONICS, 2023, 12 (11)
  • [2] Improved YOLOv5s Algorithm for Small Target Detection in UAV Aerial Photography
    Li, Shixin
    Liu, Chen
    Tang, Kaiwen
    Meng, Fanrun
    Zhu, Zhiren
    Zhou, Liming
    Chen, Fankai
    IEEE ACCESS, 2024, 12 : 9784 - 9791
  • [3] Improved YOLOv7 Target Detection Algorithm Based on UAV Aerial Photography
    Bai, Zhen
    Pei, Xinbiao
    Qiao, Zheng
    Wu, Guangxin
    Bai, Yue
    DRONES, 2024, 8 (03)
  • [4] M-YOLOv8s: An improved small target detection algorithm for UAV aerial photography☆
    Duan, Siyao
    Wang, Ting
    Li, Tao
    Yang, Wankou
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 104
  • [5] Lightweight YOLOv8 Detection Algorithm for Small Object Detection in UAV Aerial Photography
    Li, Yanchao
    Shi, Weiya
    Feng, Can
    Computer Engineering and Applications, 60 (17): : 167 - 178
  • [6] HSP-YOLOv8: UAV Aerial Photography Small Target Detection Algorithm
    Zhang, Heng
    Sun, Wei
    Sun, Changhao
    He, Ruofei
    Zhang, Yumeng
    DRONES, 2024, 8 (09)
  • [7] Target Detection Algorithm of UAV Aerial Image Based on Improved YOLOv5
    Li, Xiaolin
    Liu, Dadong
    Liu, Xinman
    Chen, Ze
    Computer Engineering and Applications, 2024, 60 (11) : 204 - 214
  • [8] UAV aerial photography target detection based on improved YOLOv9
    Zhang, Heng
    Peng, Yang
    Liu, Yan li
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (03):
  • [9] UAV aerial photography target detection based on improved YOLOv9UAV aerial photography target detection based on improved YOLOv9Z. Heng et al.
    Heng Zhang
    Yang Peng
    Yan li Liu
    The Journal of Supercomputing, 81 (3)
  • [10] YOLOv5s-DSD: An Improved Aerial Image Detection Algorithm Based on YOLOv5s
    Sun, Chaoyue
    Chen, Yajun
    Xiao, Ci
    You, Longxiang
    Li, Rongzhen
    SENSORS, 2023, 23 (15)