Atomistic Simulations of Polydisperse Lignin Melts Using Simple Polydisperse Residue Input Generator

被引:1
|
作者
Sethuraman, Vaidyanathan [1 ]
Vermaas, Josh V. [2 ,3 ]
Liang, Luna [4 ]
Ragauskas, Arthur J. [4 ,5 ,6 ]
Smith, Jeremy C. [1 ,7 ]
Petridis, Loukas [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Mol Biophys, Oak Ridge, TN 37830 USA
[2] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[4] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA
[5] Univ Tennessee, Inst Agr, Ctr Renewable Carbon, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37996 USA
[6] Oak Ridge Natl Lab, UTK ORNL Joint Inst Biol Sci, Biosci Div, Oak Ridge, TN 37831 USA
[7] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA
关键词
PARTICLE MESH EWALD; MOLECULAR-DYNAMICS; LIGNOCELLULOSIC BIOMASS; GROMACS; HEMICELLULOSES; PRETREATMENT; CHARMM;
D O I
10.1021/acs.biomac.3c00951
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the physics of lignin will help rationalize its function in plant cell walls as well as aiding practical applications such as deriving biofuels and bioproducts. Here, we present SPRIG (Simple Polydisperse Residue Input Generator), a program for generating atomic-detail models of random polydisperse lignin copolymer melts i.e., the state most commonly found in nature. Using these models, we use all-atom molecular dynamics (MD) simulations to investigate the conformational and dynamic properties of polydisperse melts representative of switchgrass (Panicum virgatum L.) lignin. Polydispersity, branching and monolignol sequence are found to not affect the calculated glass transition temperature, T-g. The Flory-Huggins scaling parameter for the segmental radius of gyration is 0.42 +/- 0.02, indicating that the chains exhibit statistics that lie between a globular chain and an ideal Gaussian chain. Below T-g the atomic mean squared displacements are independent of molecular weight. In contrast, above T-g, they decrease with increasing molecular weight. Therefore, a monodisperse lignin melt is a good approximation to this polydisperse lignin when only static properties are probed, whereas the molecular weight distribution needs to be considered while analyzing lignin dynamics.
引用
收藏
页码:767 / 777
页数:11
相关论文
共 11 条
  • [1] Atomistic molecular dynamics simulation of polydisperse linear polyethylene melts
    Harmandaris, VA
    Mavrantzas, VG
    Theodorou, DN
    MACROMOLECULES, 1998, 31 (22) : 7934 - 7943
  • [2] Atomistic molecular dynamics simulation of polydisperse linear polyethylene melts
    Univ of Patras, Patras, Greece
    Macromolecules, 22 (7934-7943):
  • [3] VARIABLE CONNECTIVITY METHOD FOR THE ATOMISTIC MONTE-CARLO SIMULATION OF POLYDISPERSE POLYMER MELTS
    PANT, PVK
    THEODOROU, DN
    MACROMOLECULES, 1995, 28 (21) : 7224 - 7234
  • [4] Performance improvements of polydisperse DEM simulations using a loose octree approach
    Stein, G.
    Wirtz, S.
    Scherer, V
    PARALLEL COMPUTING: ON THE ROAD TO EXASCALE, 2016, 27 : 53 - 62
  • [5] Numerical Simulations of a Polydisperse Sedimentation Model by Using Spectral WENO Method with Adaptive Multiresolution
    Vega, Carlos A.
    Arias, Francisco
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2016, 13 (06)
  • [6] Predictions of the linear rheology of polydisperse, entangled linear polymer melts by using the discrete slip-link model
    Taletskiy, Konstantin
    Tervoort, Theo A.
    Schieber, Jay D.
    JOURNAL OF RHEOLOGY, 2018, 62 (06) : 1331 - 1338
  • [7] Elucidating the 1H NMR Relaxation Mechanism in Polydisperse Polymers and Bitumen Using Measurements, MD Simulations, and Models
    Singer, Philip M.
    Parambathu, Arjun Valiya
    Wang, Xinglin
    Asthagiri, Dilip
    Chapman, Walter G.
    Hirasaki, George J.
    Fleury, Marc
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (20): : 4222 - 4233
  • [8] Numerical study of segregation using a new drag force correlation for polydisperse systems derived from lattice-Boltzmann simulations
    Beetstra, R.
    van der Hoef, M. A.
    Kuipers, J. A. M.
    CHEMICAL ENGINEERING SCIENCE, 2007, 62 (1-2) : 246 - 255
  • [9] Elucidating the 1H NMR Relaxation Mechanism in Polydisperse Polymers and Bitumen Using Measurements, MD Simulations, and Models (vol 124, pg 4222, 2020)
    Singer, Philip M.
    Parambathu, Arjun Valiya
    Wang, Xinglin
    Asthagiri, Dilip
    Chapman, Walter G.
    Hirasaki, George J.
    Fleury, Marc
    Ranguelova, Kalina
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (40): : 11338 - 11339
  • [10] CHARMM-GUI Input Generator for NAMD, Gromacs, Amber, Openmm, and CHARMM/OpenMM Simulations using the CHARMM36 Additive Force Field
    Lee, Jumin
    Cheng, Xi
    Jo, Sunhwan
    MacKerell, Alexander D., Jr.
    Klauda, Jeffery B.
    Im, Wonpil
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 641A - 641A