Effect of CaO Additive on the Properties of Plasma Electrolytic Oxidation Coatings on AZ31 Mg Alloy

被引:2
|
作者
Rahmati, Maryam [1 ,2 ]
Saidi, Roya [1 ]
Raeissi, Keyvan [1 ]
Hakimizad, Amin [3 ]
机构
[1] Isfahan Univ Technol, Dept Mat Engn, Esfahan 8415683111, Iran
[2] Isfahan Univ Med Sci, Dent Res Inst, Dent Mat Res Ctr, Sch Dent, Esfahan 8174673461, Iran
[3] Yazd Univ, Sci & Technol Campus, Yekta Mobaddel Pars Co, Yazd 8915818411, Iran
关键词
AZ31 Mg alloy; biomaterial; calcium oxide additive; corrosion resistance; plasma electrolytic oxidation; pulsed waveforms; MAGNESIUM ALLOY; CORROSION BEHAVIOR; PEO COATINGS; MICROARC OXIDATION; POTASSIUM FLUORIDE; PHOSPHATE; RESISTANCE; SILICATE; MICROSTRUCTURE; PERFORMANCE;
D O I
10.1007/s11665-023-09123-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnesium alloys are considered a suitable candidate for body implants due to their favorable properties such as non-toxicity and favorable mechanical properties. The limitation is their high corrosion rate in the physiological environment of the body. In the present study, PEO coating was applied from a phosphate-based bath with and without CaO nanoparticles additive on AZ31 Mg alloy using unipolar and bipolar waveforms and soft sparking waveforms. The cathodic cycle led to the entry of more calcium, and a coating was formed with higher bioactivity and smaller pore size. However, the incorporation of calcium showed negative effects on the corrosion performance of the coatings in the short-term immersion (3 h) in simulated body fluid (SBF) due to the creation of a thinner coating and more micro-cracks. However, these coatings were able to show a higher barrier performance against the corrosive solution in long-term immersion (longer than 1 day), due to the higher ability of calcium phosphate formation and blocking of coating defects. By increasing the cathodic width in the bipolar waveform, high-intensity cathodic discharges happened on the coating surface, which damaged the coating and created spalling that deteriorated the coating barrier performance.
引用
收藏
页码:1050 / 1066
页数:17
相关论文
共 50 条
  • [1] Influence of plasma electrolytic oxidation coatings on fatigue performance of AZ31 Mg alloy
    Klein, M.
    Lu, X.
    Blawert, C.
    Kainer, K. U.
    Zheludkevich, M. L.
    Walther, F.
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2017, 68 (01): : 50 - 57
  • [2] Characterization of AZ31 Mg Alloy coated by plasma electrolytic oxidation
    Durdu, Salih
    Bayramoglu, Selin
    Demirtas, Aysun
    Usta, Metin
    Ucisik, A. Hikmet
    VACUUM, 2013, 88 : 130 - 133
  • [3] Hydrothermal Sealing of Plasma Electrolytic Oxidation Coatings Developed on AZ31 Alloy
    Toro, L.
    Zuleta, A. A.
    Correa, E.
    Echeverria, F.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (12) : 9768 - 9776
  • [4] Hydrothermal Sealing of Plasma Electrolytic Oxidation Coatings Developed on AZ31 Alloy
    L. Toro
    A. A Zuleta
    E. Correa
    F. Echeverría
    Journal of Materials Engineering and Performance, 2022, 31 : 9768 - 9776
  • [5] An investigation of plasma electrolytic oxidation coatings on crevice surface of AZ31 magnesium alloy
    Han, Huiping
    Wang, Ruiqiang
    Wu, Yekang
    Zhang, Xuzhen
    Wang, Dongdong
    Yang, Zhong
    Su, Yu
    Shen, Dejiu
    Nash, Philip
    Journal of Alloys and Compounds, 2021, 811
  • [6] An investigation of plasma electrolytic oxidation coatings on crevice surface of AZ31 magnesium alloy
    Han, Huiping
    Wang, Ruiqiang
    Wu, Yekang
    Zhang, Xuzhen
    Wang, Dongdong
    Yang, Zhong
    Su, Yu
    Shen, Dejiu
    Nash, Philip
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 811
  • [7] Characteristics of magnesium phosphate coatings formed on AZ31 Mg alloy by plasma electrolytic oxidation with improved current efficiency
    Anawati, Anawati
    Hidayati, Efrina
    Labibah, Hasna
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 272
  • [8] Effect of Pulse Current Mode on Microstructure, Composition and Corrosion Performance of the Coatings Produced by Plasma Electrolytic Oxidation on AZ31 Mg Alloy
    Rahmati, Maryam
    Raeissi, Keyvan
    Toroghinejad, Mohammad Reza
    Hakimizad, Amin
    Santamaria, Monica
    COATINGS, 2019, 9 (10)
  • [9] Effect of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy
    Zhao, Jingmao
    Xie, Xiong
    Zhang, Chen
    CORROSION SCIENCE, 2017, 114 : 146 - 155
  • [10] Effect of the Pulse Duty Cycle on Characteristics of Plasma Electrolytic Oxidation Coatings Formed on AZ31 Magnesium Alloy
    Chen Huan
    Lv Guo-Hua
    Zhang Gu-Ling
    Pang Hua
    Wang Xing-Quan
    Zhang You-Wei
    Lee, Heon-Ju
    Yang Si-Ze
    CHINESE PHYSICS LETTERS, 2009, 26 (09)