An improved Riemann SPH-Hamiltonian SPH coupled solver for hydroelastic fluid-structure interactions

被引:22
|
作者
Khayyer, Abbas [1 ]
Gotoh, Hitoshi [1 ]
Shimizu, Yuma [1 ]
Gotoh, Takafumi [1 ]
机构
[1] Kyoto Univ, Dept Civil & Earth Resources Engn, Kyoto, Japan
关键词
Smoothed particle hydrodynamics; Riemann SPH; Hamiltonian SPH; Fluid-structure interaction; Enhanced schemes; SMOOTHED PARTICLE HYDRODYNAMICS; FREE-SURFACE FLOWS; BOUNDARY-CONDITION; ELASTIC STRUCTURE; SEMIIMPLICIT METHOD; DIFFUSIVE TERMS; ALGORITHM; STABILIZATION; CONSERVATION; SIMULATION;
D O I
10.1016/j.enganabound.2023.10.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper presents a novel Lagrangian meshfree computational solver for simulation of hydroelastic fluid-elastic structure interaction (FSI) problems. An explicit Smoothed Particle Hydrodynamics (SPH) method, referred to as Riemann SPH, is adopted as the fluid model, and a SPH method within the Hamiltonian framework, namely Hamiltonian SPH (HSPH), is considered as the structure model. A two-way coupling between fluid and structure models is performed in a consistent manner, resulting in a coupled RSPH-HSPH hydroelastic FSI solver. For enhancement of accuracy and robustness of the proposed FSI solver, four refined schemes are incorporated for the fluid and structure models. These four refined schemes include (i) a novel dissipation limiter in the fluid's continuity equation for enforcing the volume conservation, (ii) a refined reconstruction of the quantities in Riemann SPH in the presence of a potential field, (iii) a modified velocity-divergence error mitigation term in the fluid's momentum equation for enhanced satisfaction of the incompressibility condition, and (iv) a Riemann diffusion term in the structural momentum equation for enhanced stability and robustness. Validations of the proposed FSI solver are carried out through a series of fluid, structure and FSI benchmark tests.
引用
收藏
页码:332 / 355
页数:24
相关论文
共 50 条
  • [1] A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures
    Khayyer, Abbas
    Shimizu, Yuma
    Gotoh, Hitoshi
    Nagashima, Ken
    APPLIED MATHEMATICAL MODELLING, 2021, 94 : 242 - 271
  • [2] A hydroelastic fluid-structure interaction solver based on the Riemann-SPH method
    Meng, Zi-Fei
    Zhang, A-Man
    Yan, Jia-Le
    Wang, Ping-Ping
    Khayyer, Abbas
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390
  • [3] A coupled SPH-SPIM solver for fluid-structure interaction with nonlinear deformation
    Yang, Xi
    Liang, Guangqi
    Zhang, Guiyong
    Zhang, Zhifan
    Sun, Zhe
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 427
  • [4] Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions
    Moubin Liu
    Zhilang Zhang
    Science China Physics, Mechanics & Astronomy, 2019, 62
  • [5] Two-phase SPH simulation of fluid-structure interactions
    Gong, Kai
    Shao, Songdong
    Liu, Hua
    Wang, Benlong
    Tan, Soon-Keat
    JOURNAL OF FLUIDS AND STRUCTURES, 2016, 65 : 155 - 179
  • [6] Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions
    Liu, Moubin
    Zhang, Zhilang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (08)
  • [7] A multi-resolution SPH method for fluid-structure interactions
    Zhang, Chi
    Rezavand, Massoud
    Hu, Xiangyu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 429
  • [8] Smoothed particle hydrodynamics(SPH) for modeling fluid-structure interactions
    Moubin Liu
    Zhilang Zhang
    Science China(Physics,Mechanics & Astronomy), 2019, (08) : 5 - 42
  • [9] SPH modeling of fluid-structure interaction
    Han, Luhui
    Hu, Xiangyu
    JOURNAL OF HYDRODYNAMICS, 2018, 30 (01) : 62 - 69
  • [10] Simulating Fluid-Structure Interaction with SPH
    Viccione, Giacomo
    Bovolin, Vittorio
    Carratelli, Eugenio Pugliese
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 209 - 212