Zero-shot stance detection via multi-perspective contrastive with unlabeled data

被引:7
|
作者
Jiang, Yan [1 ,2 ]
Gao, Jinhua [1 ]
Shen, Huawei [1 ,2 ]
Cheng, Xueqi [2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Data Intelligence Syst Res Ctr, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Key Lab Network Data Sci & Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Stance detection; Contrastive learning; Unlabeled data; Zero-shot;
D O I
10.1016/j.ipm.2023.103361
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stance detection is to distinguish whether the text's author supports, opposes, or maintains a neutral stance towards a given target. In most real-world scenarios, stance detection needs to work in a zero-shot manner, i.e., predicting stances for unseen targets without labeled data. One critical challenge of zero-shot stance detection is the absence of contextual information on the targets. Current works mostly concentrate on introducing external knowledge to supplement information about targets, but the noisy schema-linking process hinders their performance in practice. To combat this issue, we argue that previous studies have ignored the extensive target -related information inhabited in the unlabeled data during the training phase, and propose a simple yet efficient Multi-Perspective Contrastive Learning Framework for zero-shot stance detection. Our framework is capable of leveraging information not only from labeled data but also from extensive unlabeled data. To this end, we design target-oriented contrastive learning and label-oriented contrastive learning to capture more comprehensive target representation and more distinguishable stance features. We conduct extensive experiments on three widely adopted datasets (from 4870 to 33,090 instances), namely SemEval-2016, WT-WT, and VAST. Our framework achieves 53.6%, 77.1%, and 72.4% macro-average F1 scores on these three datasets, showing 2.71% and 0.25% improvements over state-of-the-art baselines on the SemEval-2016 and WT-WT datasets and comparable results on the more challenging VAST dataset.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Zero-Shot Stance Detection via Contrastive Learning
    Liang, Bin
    Chen, Zixiao
    Gui, Lin
    He, Yulan
    Yang, Min
    Xu, Ruifeng
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2738 - 2747
  • [2] Zero-shot stance detection based on multi-perspective transferable feature fusion
    Zhao, Xuechen
    Zou, Jiaying
    Miao, Jinfeng
    Tian, Lei
    Gao, Liqun
    Zhou, Bin
    Pang, Shengnan
    INFORMATION FUSION, 2024, 108
  • [3] Zero-shot stance detection based on multi-perspective transferable feature fusion
    Zhao, Xuechen
    Zou, Jiaying
    Miao, Jinfeng
    Tian, Lei
    Gao, Liqun
    Zhou, Bin
    Pang, Shengnan
    Information Fusion, 2024, 108
  • [4] Zero-Shot Stance Detection via Sentiment-Stance Contrastive Learning
    Zou, Jiaying
    Zhao, Xuechen
    Xie, Feng
    Zhou, Bin
    Zhang, Zhong
    Tian, Lei
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 251 - 258
  • [5] Feature Enhanced Zero-Shot Stance Detection via Contrastive Learning
    Zhao, Xuechen
    Zou, Jiaying
    Zhang, Zhong
    Xie, Feng
    Zhou, Bin
    Tian, Lei
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 900 - 908
  • [6] Enhancing Zero-Shot Stance Detection with Contrastive and Prompt Learning
    Yao, Zhenyin
    Yang, Wenzhong
    Wei, Fuyuan
    ENTROPY, 2024, 26 (04)
  • [7] A meta-contrastive learning with data augmentation framework for zero-shot stance detection
    Wang, Chunling
    Zhang, Yijia
    Wang, Shilong
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [8] JointCL: A Joint Contrastive Learning Framework for Zero-Shot Stance Detection
    Liang, Bin
    Zhu, Qinglin
    Li, Xiang
    Yang, Min
    Gui, Lin
    He, Yulan
    Xu, Ruifeng
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 81 - 91
  • [9] A Survey of Zero-Shot Stance Detection
    Liu, Guangzhen
    Zhao, Kai
    Zhang, Linlin
    Bi, Xuehua
    Lv, Xiaoyi
    Chen, Cheng
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT V, NLPCC 2024, 2025, 15363 : 107 - 120
  • [10] Adversarial contrastive representation training with external knowledge injection for zero-shot stance detection
    Ding, Yifan
    Lei, Ying
    Wang, Anqi
    Liu, Xiangrun
    Zhu, Tuanfei
    Li, Yizhou
    NEUROCOMPUTING, 2025, 614