Optimizing the strength and electrical conductivity of graphene reinforced Cu-Cr-Zr alloy fabricated by powder metallurgy and spark plasma sintering

被引:15
|
作者
Naseri, Javid [1 ]
Ranjbar, Khalil [1 ]
Reihanian, M. [1 ]
机构
[1] Shahid Chamran Univ Ahvaz, Fac Engn, Dept Mat Sci & Engn, Ahvaz, Iran
关键词
Cu-Cr-Zr alloy; Graphene nanosheets; Graphene reinforced composites; Mechanical alloying; Electrical conductivity; Spark plasma sintering; COPPER MATRIX COMPOSITES; MECHANICAL-PROPERTIES; CUCRZR ALLOY; THERMAL-CONDUCTIVITY; CARBON NANOTUBES; MICROSTRUCTURE; NANOCOMPOSITES; BEHAVIOR; OXIDE; AL;
D O I
10.1016/j.matchemphys.2023.127524
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Copper-based Cu-1Cr-0.2Zr alloys reinforced with graphene nanosheets were fabricated via the powder metallurgy route. The alloy powders were first mechanically alloyed in a high-energy planetary ball mill up to 96 h in an argon atmosphere. Then graphene nanosheets were added (between 0 and 1 wt%) to the alloyed powder and mixed for 6 h in the milling machine. The composite powders were then consolidated in a graphite die using the spark plasma sintering (SPS) at temperatures of 650-850 degrees C under a vacuum atmosphere. Results showed that relative densities decreased with increasing graphene content but increased with the rising sintering temperature. The compressive yield stress of the composites increased with increasing the graphene content. The maximum yield stress was obtained with 1 wt% graphene, more than two-times increase compared with the parent alloy with no graphene addition. The contribution of the various strengthening mechanisms for the graphene-reinforced composites was calculated using a combined microstructure strengthening model based on the modified shear lag theory. The electrical conductivity enhanced as the sintering temperature was increased while it diminished with graphene addition. According to the results, the sintering temperature of 750 degrees C and 0.1 wt% graphene addition resulted in optimal electrical and mechanical properties.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Microstructure and Properties of Graphene-Reinforced Cu-Cr-Zr Matrix Composites Fabricated by Spark Plasma Sintering
    Wang, Qingjuan
    Fan, Ruixue
    Liu, Dan
    Zhang, Yufeng
    Wang, Wei
    Du, Zhongze
    Liu, Shifeng
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2022, 51 (02): : 414 - 421
  • [2] Microstructure and Properties of Graphene-Reinforced Cu-Cr-Zr Matrix Composites Fabricated by Spark Plasma Sintering
    Wang Qingjuan
    Fan Ruixue
    Liu Dan
    Zhang Yufeng
    Wang Wei
    Du Zhongze
    Liu Shifeng
    RARE METAL MATERIALS AND ENGINEERING, 2022, 51 (02) : 414 - 421
  • [3] Optimizing strength and electrical conductivity of Cu-Cr-Zr alloy by two-stage aging treatment
    Hu, Jingyuan
    Tian, Yanzhong
    Yu, Haowei
    Ling, Guoping
    Li, Song
    Jiang, Min
    Li, Hongxiao
    Qin, Gaowu
    MATERIALS LETTERS, 2022, 315
  • [4] Optimizing the strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by rotary swaging and aging treatment
    Huang, A. H.
    Wang, Y. F.
    Wang, M. S.
    Song, L. Y.
    Li, Y. S.
    Gao, L.
    Huang, C. X.
    Zhu, Y. T.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 746 (211-216): : 211 - 216
  • [5] A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and intermediate aging treatment
    Zhang, Shaojian
    Li, Rengeng
    Kang, Huijun
    Chen, Zongning
    Wang, Wei
    Zou, Cunlei
    Li, Tingju
    Wang, Tongmin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 680 : 108 - 114
  • [6] Cu-Cr-Zr alloy matrix composite prepared by powder metallurgy method
    Zhan, Y.
    Xu, Y.
    Yu, Z.
    Wang, Y.
    Xie, H.
    Shi, X.
    POWDER METALLURGY, 2006, 49 (03) : 253 - 257
  • [7] CHARACTERIZATION OF AN Cu-Cr-Zr ALLOY SYNTHESIZED WITH THE POWDER-METALLURGY TECHNIQUE
    Ipek, Mediha
    MATERIALI IN TEHNOLOGIJE, 2013, 47 (01): : 111 - 114
  • [8] A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryogenic friction stir processing and subsequent annealing treatment
    Wang, Yunpeng
    Fu, Ruidong
    Li, Yijun
    Zhao, Liang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 755 : 166 - 169
  • [9] Optimization of strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by cold rolling and aging treatment
    Meng, Ao
    Nie, Jinfeng
    Wei, Kang
    Kang, Huijun
    Liu, Zhuangjia
    Zhao, Yonghao
    VACUUM, 2019, 167 : 329 - 335
  • [10] Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu-Cr-Zr alloy
    Mishnev, R.
    Shakhova, I.
    Belyakov, A.
    Kaibyshev, R.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 629 : 29 - 40