Long-term nitrogen and phosphorus fertilization reveals that phosphorus limitation shapes the microbial community composition and functions in tropical montane forest soil

被引:33
|
作者
Ma, Xiaomin [1 ]
Zhou, Zhang [2 ]
Chen, Jie [2 ]
Xu, Han [2 ]
Ma, Suhui [3 ]
Dippold, Michaela A. [4 ]
Kuzyakov, Yakov [5 ,6 ]
机构
[1] Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, Hangzhou 311300, Peoples R China
[2] Chinese Acad Forestry, Res Inst Trop Forestry, Guangzhou 510520, Peoples R China
[3] Peking Univ, Key Lab Earth Surface Proc, Coll Urban & Environm Sci, Inst Ecol,Minist Educ, Beijing, Peoples R China
[4] Univ Tubingen, Geobiosphere Interact, Tuebingen Schnarrenberg Str 94-96, D-72076 Tubingen, Germany
[5] Univ Goettingen, Dept Agr Soil Sci, Dept Soil Sci Temperate Ecosyst, D-37077 Gottingen, Germany
[6] Peoples Friendship Univ Russia RUDN Univ, Moscow 117198, Russia
基金
中国国家自然科学基金;
关键词
Nitrogen and phosphorus fertilization; Microbial community composition; Enzyme activity; Functional gene abundance; Nutrient cycling; Tropical montane forest; BIOMASS PHOSPHORUS; ENZYME-ACTIVITIES; ORGANIC-MATTER; AMINO SUGAR; CARBON; DEPOSITION; BACTERIAL; RESPIRATION; ADDITIONS; RESPONSES;
D O I
10.1016/j.scitotenv.2022.158709
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microorganisms govern soil nutrient cycling. It is therefore critical to understand their responses to human-induced increases in N and P inputs. We investigated microbial community composition, biomass, functional gene abundance, and enzyme activities in response to 10-year N and P addition in a primary tropical montane forest, and we explored the drivers behind these effects. Fungi were more sensitive to nutrient addition than bacteria, and the fungal commu-nity shift was mainly driven by P availability. N addition aggravated P limitation, to which microbes responded by in-creasing the abundance of P cycling functional genes and phosphatase activity. In contrast, P addition alleviated P deficiency, and thus P cycling functional gene abundance and phosphatase activity decreased. The shift of microbial community composition, changes in functional genes involved in P cycling, and phosphatase activity were mainly driven by P addition, which also induced the alteration of soil stoichiometry (C/P and N/P). Eliminating P deficiency through fertilization accelerated C cycling by increasing the activity of C degradation enzymes. The abundances of C and P functional genes were positively correlated, indicating the intensive coupling of C and P cycling in P-limited for-est soil. In summary, a long-term fertilization experiment demonstrated that soil microorganisms could adapt to in-duced environmental changes in soil nutrient stoichiometry, not only through shifts of microbial community composition and functional gene abundances, but also through the regulation of enzyme production. The response of the microbial community to N and P imbalance and effects of the microbial community on soil nutrient cycling should be incorporated into the ecosystem biogeochemical model.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Phosphorus limitation promotes soil carbon storage in a boreal forest exposed to long-term nitrogen fertilization
    Richy, Etienne
    Fort, Tania
    Odriozola, Inaki
    Kohout, Petr
    Barbi, Florian
    Martinovic, Tijana
    Tupek, Boris
    Adamczyk, Bartosz
    Lehtonen, Aleksi
    Makipaa, Raisa
    Baldrian, Petr
    [J]. GLOBAL CHANGE BIOLOGY, 2024, 30 (09)
  • [2] Biochar amendment reassembles microbial community in a long-term phosphorus fertilization paddy soil
    Tongtong Zhou
    Sijia Tang
    Jie Cui
    Yukai Zhang
    Xin Li
    Qicheng Qiao
    Xi-En Long
    [J]. Applied Microbiology and Biotechnology, 2023, 107 : 6013 - 6028
  • [3] Biochar amendment reassembles microbial community in a long-term phosphorus fertilization paddy soil
    Zhou, Tongtong
    Tang, Sijia
    Cui, Jie
    Zhang, Yukai
    Li, Xin
    Qiao, Qicheng
    Long, Xi-En
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2023, 107 (19) : 6013 - 6028
  • [4] LONG-TERM NITROGEN AND PHOSPHORUS FERTILIZATION EFFECTS ON SOIL PROPERTIES
    Tanase, Veronica
    Vrinceanu, Nicoleta
    Preda, Mihaela
    Kurtinecz, Paul
    Motelica, Dumitru Marian
    Costea, Mihaela
    Plopeanu, Georgiana
    Carabulea, Vera
    [J]. SCIENTIFIC PAPERS-SERIES A-AGRONOMY, 2022, 65 (01): : 170 - 176
  • [5] Soil Nitrogen and Phosphorus Behavior in a Long-Term Fertilization Experiment
    Anthony, Peter
    Malzer, Gary
    Zhang, Mingchu
    Sparrow, Stephen
    [J]. AGRONOMY JOURNAL, 2012, 104 (05) : 1223 - 1237
  • [6] Long-term phosphorus fertilization reveals the phosphorus limitation shaping the soil micro-food web stability in the Loess Plateau
    Li, Liangliang
    Luo, Zhuzhu
    Li, Lingling
    Niu, Yining
    Zhang, Yaoquan
    He, Renyuan
    Liu, Jiahe
    Nian, Lili
    [J]. FRONTIERS IN MICROBIOLOGY, 2024, 14
  • [7] Effect of long-term phosphorus fertilization on soil phosphorus fractions
    Zamuner, E. C.
    Picone, L. I.
    Diez, A. B.
    [J]. SPANISH JOURNAL OF SOIL SCIENCE, 2012, 2 (02): : 50 - 61
  • [8] Long-term effects of nitrogen and phosphorus fertilization on soil microbial community structure and function under continuous wheat production
    Li, Yunliang
    Tremblay, Julien
    Bainard, Luke D.
    Cade-Menun, Barbara
    Hamel, Chantal
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2020, 22 (03) : 1066 - 1088
  • [9] Biochar amendment alleviates soil microbial nitrogen and phosphorus limitation and increases soil heterotrophic respiration under long-term nitrogen input in a subtropical forest
    Li, Quan
    Ji, Hangxiang
    Zhang, Chao
    Cui, Yongxing
    Peng, Changhui
    Chang, Scott X.
    Cao, Tingting
    Shi, Man
    Li, Yongfu
    Wang, Xiao
    Zhang, Junbo
    Song, Xinzhang
    [J]. Science of the Total Environment, 2024, 951
  • [10] THE INFLUENCE OF LONG-TERM FERTILIZATION WITH NITROGEN AND PHOSPHORUS ON THE NPK CONTENT IN SOIL
    Marin, Nicoleta
    Negrila, Maria
    [J]. AGROLIFE SCIENTIFIC JOURNAL, 2022, 11 (01): : 121 - 128