Enhancing oxygen exchange kinetics of solid oxide fuel cell cathode: Unleashing the potential of higher order Ruddlesden-Popper phase surface modification

被引:3
|
作者
Saher, Saim [1 ]
Tan, Chou Yong [1 ,2 ,10 ]
Ramesh, S. [1 ,2 ,9 ]
Yap, Boon Kar [3 ,7 ,8 ]
Ong, Boon Hoong [4 ]
Al-Furjan, M. S. H. [5 ,6 ]
机构
[1] Univ Malaya, Fac Engn, Dept Mech Engn, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Fac Engn, Ctr Adv Mfg & Mat Proc AMMP, Kuala Lumpur 50603, Malaysia
[3] Univ Tenaga Nas, Coll Engn, Elect & Commun Dept, Kajang 43000, Selangor, Malaysia
[4] Univ Malaya, Nanotecnol & Catalysis Res Ctr, Kuala Lumpur 50603, Malaysia
[5] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
[6] Zhejiang Univ Technol, Collaborat Innovat Ctr High End Laser Mfg Equipmen, Hangzhou 310023, Peoples R China
[7] Univ Tenaga Nas, Inst Sustainable Energy, Kajang 43000, Selangor, Malaysia
[8] South China Univ Technol, Int Sch Adv Mat, 381 Wushan Rd,Tianhe Dist, Guangzhou, Guangdong, Peoples R China
[9] Univ Tenaga Nas, Coll Engn, Kajang 43000, Selangor, Malaysia
[10] Univ Malaya, Fac Engn, Dept Mech Engn, Block L, Kuala Lumpur 50603, Malaysia
关键词
Perovskite structure; Ruddlesden-popper phase; Mixed conducting oxides; Oxygen surface kinetics; SOFC cathode; COMPOSITE CATHODE; ELECTROCHEMICAL CHARACTERISTICS; REDUCTION REACTION; THIN-FILM; TEMPERATURE; PERFORMANCE; TRANSPORT; ELECTRODE; CONDUCTIVITY; OPTIMIZATION;
D O I
10.1016/j.jpowsour.2023.233607
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tailoring the electrode surface represents a promising strategy to enhance electrochemical performance while preserving base material integrity. Achieving appropriate surface coverage with catalytic active oxide material is critical for efficient oxygen transport at the triple phase boundary (TPB). To further explore this approach, the perovskite structure La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) is decorated with a higher order Ruddlesden-Popper phase Pr4Ni3O10+delta (PNO). This combination is being investigated using electrical conductivity relaxation (ECR) technique to study the oxygen exchange kinetics. Samples with varying surface coverage of PNO are examined in a temperature range of 650 degrees C-850 degrees C, with a step change in pO2 between 0.1 atm and 0.21 atm. The chemical diffusion coefficient, Dchem, remains invariant across all the samples, however, the surface exchange coefficient, kchem, varies with the surface coverage of PNO. Notably, the coated sample with a PNO loading content of 0.28 mg cm-2, referred to as PNO5, demonstrates a significant enhancement of nearly two orders of magnitude in kchem compared to bare LSCF at 650 degrees C. This substantial improvement is ascribed to the increased active sites of ORR within the TPB region and the facilitated electron access through tunneling from LSCF to the coated phase. Pulse isotopic exchange (PIE) measurements on the fractionated powders confirm the fast surface exchange kinetics of PNO. Such remarkable oxygen exchange characteristics encourage the use of PNO, along with LSCF, as potential candidates for SOFC cathodes.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Review on Ruddlesden-Popper perovskites as cathode for solid oxide fuel cells
    Ding, Peipei
    Li, Wenlu
    Zhao, Hanwen
    Wu, Congcong
    Zhao, Li
    Dong, Binghai
    Wang, Shimin
    JOURNAL OF PHYSICS-MATERIALS, 2021, 4 (02):
  • [2] Ruddlesden-Popper phase materials for solid oxide fuel cell cathodes: A short review
    Yatoo M.A.
    Skinner S.J.
    Materials Today: Proceedings, 2022, 56 : 3747 - 3754
  • [3] Enhanced oxygen exchange kinetics and long-term stability of a Ruddlesden-Popper phase Pr4Ni3O10+δ cathode for solid oxide fuel cells
    Saher, Saim
    Qamar, Affaq
    Tan, Chou Yong
    Ramesh, S.
    Alfraidi, Walied
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (48) : 33766 - 33778
  • [4] Oxygen Reduction Reaction Kinetics in Sr-Doped La2NiO4+δ Ruddlesden-Popper Phase as Cathode for Solid Oxide Fuel Cells
    Guan, Bo
    Li, Wenyuan
    Zhang, Hui
    Liu, Xingbo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (07) : F707 - F712
  • [5] Enhancing oxygen reaction kinetics in lanthanum nickelate Ruddlesden-Popper electrodes via praseodymium oxide infiltration for solid oxide cells
    Farias, Morena B.
    Araujo, Allan J. M.
    Paskocimas, Carlos A.
    Fagg, Duncan P.
    Loureiro, Francisco J. A.
    DALTON TRANSACTIONS, 2024, 53 (40) : 16610 - 16620
  • [6] Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas
    Vecino-Mantilla, Sebastian
    Zignani, Sabrina C.
    Vannier, Rose-Noelle
    Arico, Antonino S.
    Lo Faro, Massimiliano
    RENEWABLE ENERGY, 2022, 192 : 784 - 792
  • [7] A Ruddlesden-Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures
    Peng, Shujun
    Lei, Song
    Wen, Sisi
    Xue, Jian
    Wang, Haihui
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 56 : 25 - 32
  • [8] A promising Ruddlesden-Popper oxide cathode for both proton-conducting and oxygen ionic-conducting solid oxide fuel cells
    Peng, Shujun
    Lei, Song
    Wen, Sisi
    Liu, Xingyao
    Xue, Jian
    REACTION CHEMISTRY & ENGINEERING, 2022, 7 (11) : 2410 - 2419
  • [9] Recent developments in Ruddlesden-Popper nickelate systems for solid oxide fuel cell cathodes
    Amow, G
    Skinner, SJ
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (08) : 538 - 546
  • [10] Ni doped PrSr3Fe3O10-δ Ruddlesden-Popper oxide for active oxygen reduction cathode for solid oxide fuel cell
    Chaianansutcharit, Soamwadee
    Ju, Young Wan
    Ida, Shintaro
    Ishihara, Tatsumi
    ELECTROCHIMICA ACTA, 2016, 222 : 1853 - 1860