Bayesian discrete lognormal regression model for genomic prediction

被引:0
|
作者
Montesinos-Lopez, Abelardo [1 ]
Gutierrez-Pulido, Humberto [1 ]
Ramos-Pulido, Sofia [1 ]
Montesinos-Lopez, Jose Cricelio [2 ]
Montesinos-Lopez, Osval A. [3 ]
Crossa, Jose [4 ,5 ,6 ]
机构
[1] Univ Guadalajara, Ctr Univ Ciencias Exactas Ingn CUCEI, Dept Matemat, Guadalajara 44430, Jalisco, Mexico
[2] Univ Calif Davis, Dept Publ Hlth Sci, Davis, CA 95616 USA
[3] Univ Colima, Fac Telematica, Colima 28040, Colima, Mexico
[4] Int Maize & Wheat Improvement Ctr CIMMYT, Carretera Mexico Veracruz Km 45, Texcoco 56237, Colima, Mexico
[5] Colegio Postgrad, Montecillos 56230, Edo de Mexico, Mexico
[6] Murdoch Univ, Food Futures Inst, Ctr Crop & Food Innovat, Murdoch 6150, Australia
基金
芬兰科学院; 比尔及梅琳达.盖茨基金会;
关键词
ENABLED PREDICTION; THRESHOLD MODELS; COUNT DATA; SELECTION; DISTRIBUTIONS; WHEAT;
D O I
10.1007/s00122-023-04526-4
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Key messageGenomic prediction models for quantitative traits assume continuous and normally distributed phenotypes. In this research, we proposed a novel Bayesian discrete lognormal regression model.AbstractGenomic selection is a powerful tool in modern breeding programs that uses genomic information to predict the performance of individuals and select those with desirable traits. It has revolutionized animal and plant breeding, as it allows breeders to identify the best candidates without labor-intensive and time-consuming phenotypic evaluations. While several statistical models have been developed, most of them have been for quantitative continuous traits and only a few for count responses. In this paper, we propose a discrete lognormal regression model in the Bayesian context, that with a Gibbs sampler to explore the corresponding posterior distribution and make the predictions. Two datasets of resistance disease is used in the wheat crop and are then evaluated against the traditional Gaussian model and a lognormal model. The results indicate the proposed model is a competitive and natural model for predicting count genomic traits.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Bayesian discrete lognormal regression model for genomic prediction
    Abelardo Montesinos-López
    Humberto Gutiérrez-Pulido
    Sofía Ramos-Pulido
    José Cricelio Montesinos-López
    Osval A. Montesinos-López
    José Crossa
    [J]. Theoretical and Applied Genetics, 2024, 137
  • [2] Prediction in the lognormal regression model with spatial error dependence
    Kato, Takafumi
    [J]. JOURNAL OF HOUSING ECONOMICS, 2012, 21 (01) : 66 - 76
  • [3] A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods
    Ma, Jianming
    Kockelman, Kara M.
    Damien, Paul
    [J]. ACCIDENT ANALYSIS AND PREVENTION, 2008, 40 (03): : 964 - 975
  • [4] Selection of the Bandwidth Parameter in a Bayesian Kernel Regression Model for Genomic-Enabled Prediction
    Perez-Elizalde, Sergio
    Cuevas, Jaime
    Perez-Rodriguez, Paulino
    Crossa, Jose
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2015, 20 (04) : 512 - 532
  • [5] Selection of the Bandwidth Parameter in a Bayesian Kernel Regression Model for Genomic-Enabled Prediction
    Sergio Pérez-Elizalde
    Jaime Cuevas
    Paulino Pérez-Rodríguez
    José Crossa
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20 : 512 - 532
  • [6] Mixture Lognormal Cox Regression Repair Model for Prediction of the Repair Time
    Ayele, Y. Z.
    Barabadi, A.
    Fuqing, Y.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2018, : 1155 - 1159
  • [7] Bayesian estimation for median discrete Weibull regression model
    Duangsaphon, Monthira
    Sokampang, Sukit
    Bangchang, Kannat Na
    [J]. AIMS MATHEMATICS, 2024, 9 (01): : 270 - 288
  • [8] Model averaging for prediction with discrete Bayesian networks
    Dash, D
    Cooper, GF
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 5 : 1177 - 1203
  • [9] Model averaging for prediction with discrete Bayesian networks
    Dash, Denver
    Cooper, Gregory F.
    [J]. Journal of Machine Learning Research, 2004, 5 : 1177 - 1203
  • [10] A Bayesian Genomic Regression Model with Skew Normal Random Errors
    Perez-Rodriguez, Paulino
    Acosta-Pech, Rocio
    Perez-Elizalde, Sergio
    Velasco Cruz, Ciro
    Suarez Espinosa, Javier
    Crossa, Jose
    [J]. G3-GENES GENOMES GENETICS, 2018, 8 (05): : 1771 - 1785