Optimal Control of Hughes' Model for Pedestrian Flow via Local Attraction

被引:2
|
作者
Herzog, Roland [1 ]
Pietschmann, Jan-Frederik [2 ]
Winkler, Max [3 ]
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
[2] Univ Augsburg, Chair Inverse Problems, D-86159 Augsburg, Germany
[3] Tech Univ Chemnitz, Fac Math, D-09107 Chemnitz, Germany
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2023年 / 88卷 / 03期
关键词
Nonlinear PDEs; Eikonal equation; ODE-PDE coupling; Optimal control; Pedestrian motion; APPROXIMATION; EQUATIONS; DYNAMICS; VERSION; CROWDS;
D O I
10.1007/s00245-023-10064-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the control of a human crowd whose dynamics is governed by a regularized version of Hughes' model, cf. Hughes (Transp Res Part B: Methodol 36(6):507-535, 2002. https://doi.org/10.1016/s0191-2615(01)00015-7). We assume that a finite number of agents act on the crowd and try to optimize their paths in a given time interval. The objective functional can be general and it can correspond, for instance, to the desire for fast evacuation or to maintain a single group of individuals. We provide an existence and regularity result for the coupled PDE-ODE forward model via an approximation argument, study differentiability properties of the control-to-state map, establish the existence of a globally optimal control and formulate optimality conditions.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] Optimal Control of Hughes’ Model for Pedestrian Flow via Local Attraction
    Roland Herzog
    Jan-Frederik Pietschmann
    Max Winkler
    [J]. Applied Mathematics & Optimization, 2023, 88
  • [2] A DISCRETE HUGHES MODEL FOR PEDESTRIAN FLOW ON GRAPHS
    Camilli, Fabio
    Festa, Adriano
    Tozza, Silvia
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2017, 12 (01) : 93 - 112
  • [3] An improved version of the Hughes model for pedestrian flow
    Carrillo, Jose A.
    Martin, Stephan
    Wolfram, Marie-Therese
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (04): : 671 - 697
  • [4] On the Hughes' model for pedestrian flow: The one-dimensional case
    Di Francesco, Marco
    Markowich, Peter A.
    Pietschmann, Jan-Frederik
    Wolfram, Marie-Therese
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (03) : 1334 - 1362
  • [5] Optimal Control of the Mean Field Equilibrium for a Pedestrian Tourists' Flow Model
    Bagagiolo, Fabio
    Faggian, Silvia
    Maggistro, Rosario
    Pesenti, Raffaele
    [J]. NETWORKS & SPATIAL ECONOMICS, 2022, 22 (02): : 243 - 266
  • [6] Optimal Control of the Mean Field Equilibrium for a Pedestrian Tourists’ Flow Model
    Fabio Bagagiolo
    Silvia Faggian
    Rosario Maggistro
    Raffaele Pesenti
    [J]. Networks and Spatial Economics, 2022, 22 : 243 - 266
  • [7] A Stochastic Optimal Velocity Model for Pedestrian Flow
    Tordeux, Antoine
    Schadschneider, Andreas
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, PPAM 2015, PT II, 2016, 9574 : 528 - 538
  • [8] A Semi-Lagrangian Scheme for a Modified Version of the Hughes’ Model for Pedestrian Flow
    Elisabetta Carlini
    Adriano Festa
    Francisco J. Silva
    Marie-Therese Wolfram
    [J]. Dynamic Games and Applications, 2017, 7 : 683 - 705
  • [9] A Semi-Lagrangian Scheme for a Modified Version of the Hughes' Model for Pedestrian Flow
    Carlini, Elisabetta
    Festa, Adriano
    Silva, Francisco J.
    Wolfram, Marie-Therese
    [J]. DYNAMIC GAMES AND APPLICATIONS, 2017, 7 (04) : 683 - 705
  • [10] Optimal Feedback Control of Pedestrian Flow in Heterogeneous Corridors
    Zhu, Yuanheng
    Zhao, Dongbin
    He, Haibo
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2021, 18 (03) : 1097 - 1108