Grassland stability decreases with increasing number of global change factors: A meta-analysis

被引:2
|
作者
Song, Zhaobin [1 ,2 ,3 ]
Hautier, Yann [4 ]
Wang, Chao [1 ]
机构
[1] Beijing Acad Agr & Forestry Sci, Inst Grassland Flowers & Ecol, 9 Shuguang Garden Middle Rd, Beijing 100097, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Urat Desert Grassland Res Stn, Lanzhou 730000, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Utrecht, Dept Biol, Ecol & Biodivers Grp, Padualaan 8, NL-3584 CH Utrecht, Netherlands
基金
中国国家自然科学基金;
关键词
Grassland; Community stability; Global change ecology; Species stability; Species asynchrony; Environmental conditions; ECOSYSTEM STABILITY; ELEVATED CO2; NITROGEN ENRICHMENT; COMMUNITY STABILITY; NUTRIENT ADDITIONS; CHANGE DRIVERS; DIVERSITY; BIODIVERSITY; PRODUCTIVITY; RICHNESS;
D O I
10.1016/j.scitotenv.2023.165651
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Experiments manipulating a single global change factor (GCF) have provided increasing evidence that global environmental changes, such as eutrophication, precipitation change, and warming, generally affect the tem-poral stability of grassland productivity. Whether the combined impact of global changes on grassland stability increases as the number of global changes increases remains unknown. Using a meta-analysis of 673 observations from 143 sites worldwide, including 7 different GCFs, we examined the responses of grassland temporal stability of productivity to increasing numbers of GCFs. We quantified the links between community stability, biotic factors (i.e., species richness, species stability, and species asynchrony), and abiotic factors (i.e., aridity index, experimental duration, and experimental intensity). Although inconsistent responses of community stability were found with different GCF types and combinations, when integrating existing GCFs studies and ignoring the identity of GCFs, we found a general decrease in community stability as the number of GCFs increases, but the main drivers of community stability varied with the numbers of GCFs. Specifically, one GCF mainly reduced species stability through species richness and thus weakened community stability. Two GCFs weakened com-munity stability via independently weakening species stability and species asynchrony. Three GCFs reduce community stability mainly via independently weakening species asynchrony. Moreover, for single factor, the impact of GCFs on community stability was weaker under dryer conditions, but stronger when two or three factors were manipulated. In addition, the negative effect of GCFs on community stability was weaker with increasing experimental duration. Our study reveals that reduced community stability with increasing numbers of GCFs is caused by a shift from reduced species stability to reduced species asynchrony, suggesting that persistent global changes will destabilize grassland productivity by reducing asynchronous dynamics among species in response to natural environmental fluctuations.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Multiple global changes drive grassland productivity and stability: A meta-analysis
    Su, Jishuai
    Zhao, Yujin
    Xu, Fengwei
    Bai, Yongfei
    JOURNAL OF ECOLOGY, 2022, 110 (12) : 2850 - 2869
  • [2] The impact of global change factors on the functional genes of soil nitrogen and methane cycles in grassland ecosystems: a meta-analysis
    Yuhan Liu
    Yinghui Liu
    Jiaqi Zhang
    Jingyi Dong
    Siyu Ren
    Oecologia, 2025, 207 (1)
  • [3] Multivariate meta-analysis with an increasing number of parameters
    Boca, Simina M.
    Pfeiffer, Ruth M.
    Sampson, Joshua N.
    BIOMETRICAL JOURNAL, 2017, 59 (03) : 496 - 510
  • [4] Litter decomposition rate response to multiple global change factors: A meta-analysis
    Liu Y.
    Zhang A.
    Li X.
    Kuang W.
    Islam W.
    Soil Biology and Biochemistry, 2024, 195
  • [5] Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality
    Zhenghu Zhou
    Chuankuan Wang
    Yiqi Luo
    Nature Communications, 11
  • [6] Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality
    Zhou, Zhenghu
    Wang, Chuankuan
    Luo, Yiqi
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [7] A Meta-Analysis of the Global Prevalence of Hepatitis B in Light of Increasing HBV Vaccination: Is There Any Change?
    Birerdinc, Aybike
    Marzouk, Max
    Loria, Anthony
    Wang, Lei
    De Avila, Leyla
    Baranova, Ancha
    Younossi, Zobair M.
    GASTROENTEROLOGY, 2016, 150 (04) : S1164 - S1165
  • [8] Heavy grazing reduces the potential for grassland restoration: a global meta-analysis
    Mi, Wentao
    Ren, Weibo
    Chi, Yuan
    Zheng, Hao
    Fry, Ellen
    Yuan, Feng
    Liu, Yaling
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (10):
  • [9] Interactive effects of global change factors on soil respiration and its components: a meta-analysis
    Zhou, Lingyan
    Zhou, Xuhui
    Shao, Junjiong
    Nie, Yuanyuan
    He, Yanghui
    Jiang, Liling
    Wu, Zhuoting
    Bai, Shahla Hosseini
    GLOBAL CHANGE BIOLOGY, 2016, 22 (09) : 3157 - 3169
  • [10] The Effects of Multiple Global Change Factors on Soil Nutrients across China: A Meta-Analysis
    Shen, Xinyi
    Ma, Junwei
    Li, Yuqian
    Li, Yijia
    Xia, Xinghui
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (22)