Porous Mullite Ceramic Modification with Nano-WO3

被引:2
|
作者
Mahnicka-Goremikina, Ludmila [1 ]
Svinka, Ruta [1 ]
Svinka, Visvaldis [1 ]
Goremikins, Vadims [2 ]
Ilic, Svetlana [3 ]
Grase, Liga [1 ]
Juhnevica, Inna [1 ]
Rundans, Maris [1 ]
Eiduks, Toms Valdemars [1 ]
Pludons, Arturs [1 ]
机构
[1] Riga Tech Univ, Inst Mat & Surface Engn, Fac Mat Sci & Appl Chem, Paula Valdena st 3-7, LV-1048 Riga, Latvia
[2] Riga Tech Univ, Inst Struct Engn & Reconstruct, Kipsalas st 6A, LV-1048 Riga, Latvia
[3] Univ Belgrade, Vinca Inst Nucl Sci, Natl Inst Republ Serbia, Dept Mat, Box 522, Mike Petrovica Alasa 12-14, Belgade 11001, Serbia
关键词
mullite; aluminum tungstate; zircon; porous ceramic; tungsten oxide; zirconia; MECHANICAL-PROPERTIES; ELECTRONIC-STRUCTURE; STABILIZED ZIRCONIA; THERMAL-PROPERTIES; ZRO2; WO3; MICROSTRUCTURE; EXPANSION; ADDITIONS; BEHAVIOR;
D O I
10.3390/ma16134631
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mullite and mullite-alumina ceramics materials with dominance of the mullite phase are used in different areas of technology and materials science. Porous mullite ceramics materials can be used simultaneously as refractory heat insulators and also as materials for constructional elements. The purpose of this work was to investigate the WO3 nanoparticle influence on the evolution of the aluminum tungstate and zircon crystalline phases in mullite ceramics due to stabilization effects caused by different microsize ZrO2 and WO3. The use of nano-WO3 prevented the dissociation of zircon in the ceramic samples with magnesia-stabilized zirconia (MSZ), increased porosity by approximately 60 & PLUSMN; 1%, increased the intensity of the aluminum tungstate phase, decreased bulk density by approximately 1.32 & PLUSMN; 0.01 g/cm(3), and increased thermal shock resistance by ensuring a loss of less than 5% of the elastic modulus after 10 cycles of thermal shock.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Nano-WO3 film modified macro-porous silicon(MPS) gas sensor
    孙鹏
    胡明
    李明达
    马双云
    半导体学报, 2012, 33 (05) : 83 - 87
  • [2] NH3 Sensing Characteristics of Nano-WO3 Thin Films Deposited on Porous Silicon
    Sun, Fengyun
    Hu, Ming
    Sun, Peng
    Zhang, Jie
    Liu, Bo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (11) : 7739 - 7742
  • [3] Nano-WO3 film modified macro-porous silicon (MPS) gas sensor
    Sun Peng
    Hu Ming
    Li Mingda
    Ma Shuangyun
    JOURNAL OF SEMICONDUCTORS, 2012, 33 (05)
  • [4] Development of Nano-WO3 Doped with NiO for Wireless Gas Sensors
    Abozeid, M. Adel
    Hassan, H. Shokry
    Morsi, I.
    Kashyout, A. B.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (01) : 647 - 654
  • [5] Nano-WO3: Preparation, Characterization and Effect on Thermal Decomposition of Hexanitrohexaazaisowurtzitane
    Zhao Ning-Ning
    He Cui-Cui
    Wang Tong
    An Ting
    Zhao Feng-Qi
    Hu Rong-Zu
    Ma Hai-Xia
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2015, 31 (10) : 1959 - 1965
  • [6] Synthesis, characterization, and antimicrobial application of nano-palladium-doped nano-WO3
    Gondal, M. A.
    Bagabas, A.
    Dastageer, A.
    Khalil, A.
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2010, 323 (1-2) : 78 - 83
  • [7] Synthesis of Nano-WO3 Particles with Polyethylene Glycol for Chromic Film
    Tasaso, Atiphol
    Ngaotrakanwiwat, Pailin
    2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 2015, 79 : 704 - 709
  • [8] Preparation and gas sensing properties of the nano-WO3 hollow microsphere
    Gui, Yang-Hai
    Dong, Fang-Hong
    Tian, Jun-Feng
    Zhao, Jian-Bo
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2013, 42 (10): : 2099 - 2103
  • [9] Preparation and Characteristic Analysis of Superhydrophilic/superhydrophobic Ni/nano-WO3 Composites
    Bi Xiangyang
    Ming Pingmei
    Shen Jiwen
    Zhao Ximei
    CHINA SURFACE ENGINEERING, 2018, 31 (05) : 125 - 133
  • [10] Nano-WO3 Composite Materials as Electro-Catalyst for Methanol Oxidation
    Zhou Yang
    Liu Wei-Ming
    Hu Xian-Chao
    Chu You-Qun
    Ma Chun-An
    ACTA PHYSICO-CHIMICA SINICA, 2013, 29 (07) : 1487 - 1493