On complete Kahlerian manifolds endowed with closed conformal vector fields

被引:0
|
作者
Alias, Luis J. [1 ]
Caminha, Antonio [2 ]
do Nascimento, F. Yure [3 ]
机构
[1] Univ Murcia, Dept Matemat, Murcia 30100, Spain
[2] Univ Fed Ceara, Dept Matemat, Campus Pici, BR-60455760 Fortaleza, CE, Brazil
[3] Univ Fed Ceara, BR 226,Km 4, Crateus, Ceara, Brazil
关键词
Kahlerian manifold; Sasakian manifold; Conformal vector field; Maximum principle at infinity; LAGRANGIAN SUBMANIFOLDS;
D O I
10.1007/s13398-023-01459-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M)(2n), n > 1, be a complete, noncompact Kahlerian manifold, endowed with a nontrivial closed conformal vector field ? having at least one singular point. Under a reasonable set of conditions, we show that ? has just one singular point p and that (M)\{p} is isometric to a one dimensional cone over a simply connected Sasakian manifold N diffeomorphic to S2n-1.As a straightforward consequence, we conclude that if the addition of a single point to the Kahlerian cone of a (2n - 1)-dimensional Sasakian manifold N has the structure of a complete, noncompact, 2n-dimensional Kahlerian manifold whose metric extends that of the cone, and such that the canonical vector field of the cone extends to it having a singularity at the extra point, then N is isometric to S2n-1, endowed with an appropriate Sasakian structure.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A RIGIDITY RESULT FOR KAHLERIAN MANIFOLDS ENDOWED WITH CLOSED CONFORMAL VECTOR FIELDS
    Caminha, Antonio
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (02): : 469 - 484
  • [2] On complete Kählerian manifolds endowed with closed conformal vector fields
    Luis J. Alías
    Antonio Caminha
    F. Yure do Nascimento
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [3] CONFORMAL TRANSFORMATIONS ON COMPLETE KAHLERIAN MANIFOLDS
    BARBANCE, C
    BELOUAZZA, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (14): : 691 - 693
  • [4] BICONFORMAL VECTOR-FIELDS ON MANIFOLDS ENDOWED WITH A CERTAIN DIFFERENTIAL CONFORMAL STRUCTURE
    GOLDBERG, VV
    ROSCA, R
    HOUSTON JOURNAL OF MATHEMATICS, 1988, 14 (01): : 81 - 95
  • [5] The conformal vector fields on Kropina manifolds
    Cheng, Xinyue
    Yin, Li
    Li, Tingting
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 56 : 344 - 354
  • [6] On conformal vector fields on Randers manifolds
    Shen ZhongMin
    Xia QiaoLing
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (09) : 1869 - 1882
  • [7] On conformal vector fields on Randers manifolds
    ZhongMin Shen
    QiaoLing Xia
    Science China Mathematics, 2012, 55 : 1869 - 1882
  • [8] Conformal vector fields on Kaehler manifolds
    Deshmukh S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2011, 57 (1) : 17 - 26
  • [9] Conformal vector fields on Finsler manifolds
    Xia, Qiaoling
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (12)
  • [10] Conformal vector fields on lcK manifolds
    Moroianu, Andrei
    Pilca, Mihaela
    MATHEMATICAL RESEARCH LETTERS, 2023, 30 (05) : 1591 - 1608