Quasisymmetry and Quasihyperbolicity of Mappings on John Domains

被引:2
|
作者
Huang, Manzi [1 ,2 ]
Rasila, Antti [3 ,4 ]
Wang, Xiantao [1 ]
Zhou, Qingshan [5 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[3] Guangdong Technion Israel Inst Technol, Math Comp Sci Program, 241 Daxue Rd, Shantou 515063, Guangdong, Peoples R China
[4] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[5] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
关键词
Characterization; Uniformity; Inner uniformity; Quasisymmetry; Gromov hyperbolicity; UNIFORM DOMAINS; FREE QUASICONFORMALITY; INEQUALITY; EXTENSION; PROPERTY;
D O I
10.1007/s40315-022-00440-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that G is a proper subdomain of R-n, f : G -> Y is a homeomorphism with a continuous extension to the inner boundary of G, i.e., the boundary of G with respect to the corresponding inner metric, where (Y, d') stands for a locally compact, noncomplete and rectifiably connected metric space, and that G' = f (G) is uniform in Y. The purpose of this paper is to prove that G is a John domain if f is M-quasihyperbolic in G and the restriction of f on the inner boundary of G is eta-quasisynunetric with respect to the inner metric.
引用
收藏
页码:237 / 268
页数:32
相关论文
共 50 条
  • [1] Quasisymmetry and Quasihyperbolicity of Mappings on John Domains
    Manzi Huang
    Antti Rasila
    Xiantao Wang
    Qingshan Zhou
    Computational Methods and Function Theory, 2023, 23 : 237 - 268
  • [2] A quasihyperbolicity criterion for mappings
    Latfullin, TG
    SIBERIAN MATHEMATICAL JOURNAL, 1996, 37 (03) : 529 - 534
  • [3] On quasisymmetry of quasiconformal mappings
    Huang, M.
    Ponnusamy, S.
    Rasila, A.
    Wang, X.
    ADVANCES IN MATHEMATICS, 2016, 288 : 1069 - 1096
  • [4] Quasiconformal Mappings and Weakly John Domains
    褚玉明
    数学进展, 2003, (03) : 375 - 376
  • [5] Exterior John Domains and Quasisymmetric Mappings
    Jinsong Liu
    Yi Xuan
    Computational Methods and Function Theory, 2024, 24 : 7 - 25
  • [6] Exterior John Domains and Quasisymmetric Mappings
    Liu, Jinsong
    Xuan, Yi
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024, 24 (01) : 7 - 25
  • [7] Quasiconformal Mappings from Uniform Domains onto John Domains
    Huang, Manzi
    Ponnusamy, Saminathan
    Rasila, Antti
    Wang, Xiantao
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024,
  • [8] Sufficient conditions for quasisymmetry of mappings of the real axis and the plane
    V. V. Aseev
    D. G. Kuzin
    Siberian Mathematical Journal, 1998, 39 : 1057 - 1066
  • [9] Quasisymmetry of freely quasiconformal mappings in Banach spaces
    Guan, Tiantian
    Jiao, Bo
    Ponnusamy, Saminathan
    He, Yuehui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [10] Sufficient conditions for quasisymmetry of mappings of the real axis and the plane
    Aseev, VV
    Kuzin, DG
    SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (06) : 1057 - 1066