CS2DT: Cross Spatial-Spectral Dense Transformer for Hyperspectral Image Classification

被引:13
|
作者
Xu, Hao [1 ,2 ]
Zeng, Zhigang [1 ,2 ]
Yao, Wei [3 ]
Lu, Jiayue [4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[2] Minist Educ China, Key Lab Image Informat Proc & Intelligent Control, Wuhan 430074, Peoples R China
[3] South Cent Minzu Univ, Sch Comp Sci, Wuhan 430074, Peoples R China
[4] Nanjing Univ, Software Inst, Nanjing 210093, Peoples R China
关键词
Hyperspectral images (HSIs); image classification; neural network; vision transformer (ViT);
D O I
10.1109/LGRS.2023.3321343
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Compared with general optical images, hyperspectral images (HSIs) contain richer spectral information. On one hand, this provides a sufficient basis for ground object recognition. On the other hand, it results in the intermingling of spatial and spectral information. In order to make better use of the rich spatial and spectral information in HSIs, we resort to vision transformer (ViT). To be specific, we propose the cross spatial-spectral dense transformer (CS2DT) for spatial-spectral feature extracting and feature fusing. For feature extraction, CS2DT employs the adaptive dense encoder (ADE) module, which enables the extraction of multiscale semantic information. During the features fusion stage, we use the cross spatial-spectral attention (CS2A) module based on the cross-attention (CA) operation to better integrate spatial and spectral features. We evaluate the classification performance of the proposed CS2DT on three well-known datasets by conducting extensive experiments. Experimental results demonstrate that CS2DT can achieve higher accuracy and higher stability when compared with the state-of-the-art (SOTA) methods. The source code will be made available at https://github.com/shouhengx/CS2DT.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [2] Spatial-Spectral Transformer With Cross-Attention for Hyperspectral Image Classification
    Peng, Yishu
    Zhang, Yuwen
    Tu, Bing
    Li, Qianming
    Li, Wujing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Pyramid Hierarchical Spatial-Spectral Transformer for Hyperspectral Image Classification
    Ahmad, Muhammad
    Butt, Muhammad Hassaan Farooq
    Mazzara, Manuel
    Distefano, Salvatore
    Khan, Adil Mehmood
    Altuwaijri, Hamad Ahmed
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17681 - 17689
  • [4] Hybrid Multiscale Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Yan
    Tu, Bing
    Liu, Bo
    Chen, Yunyun
    Li, Jun
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] HYPERSPECTRAL IMAGE CLASSIFICATION USING HIERARCHICAL SPATIAL-SPECTRAL TRANSFORMER
    Song, Chao
    Mei, Shaohui
    Ma, Mingyang
    Xu, Fulin
    Zhang, Yifan
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3584 - 3587
  • [6] Cross-Channel Dynamic Spatial-Spectral Fusion Transformer for Hyperspectral Image Classification
    Qiu, Zhao
    Xu, Jie
    Peng, Jiangtao
    Sun, Weiwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [7] Spatial-Spectral Transformer for Hyperspectral Image Denoising
    Li, Miaoyu
    Fu, Ying
    Zhang, Yulun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 1368 - 1376
  • [8] Spatial-Spectral Transformer With Conditional Position Encoding for Hyperspectral Image Classification
    Ahmad, Muhammad
    Usama, Muhammad
    Khan, Adil Mehmood
    Distefano, Salvatore
    Altuwaijri, Hamad Ahmed
    Mazzara, Manuel
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [9] Regularized spatial-spectral transformer for domain adaptation in hyperspectral image classification
    Fang, Zhuoqun
    Hu, Yi
    Tan, Zhenhua
    Li, Zhaokui
    Yan, Zhuo
    He, Yutong
    Luo, Shaoteng
    Cao, Ye
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (04)
  • [10] BS2T: Bottleneck Spatial-Spectral Transformer for Hyperspectral Image Classification
    Song, Ruoxi
    Feng, Yining
    Cheng, Wei
    Mu, Zhenhua
    Wang, Xianghai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60