Evaluating the effect of curing conditions on the glass transition of the structural adhesive using conditional tabular generative adversarial networks

被引:6
|
作者
Wang, Songbo [1 ,2 ]
Yang, Haixin [1 ,2 ]
Stratford, Tim [3 ]
He, Jiayi [1 ]
Li, Biao [1 ,2 ]
Su, Jun [1 ,2 ]
机构
[1] Hubei Univ Technol, Sch Civil Engn Architecture & Environm, Wuhan 430068, Peoples R China
[2] Hubei Univ Technol, Key Lab Intelligent Hlth Percept & Ecol Restorat R, Minist Educ, Wuhan 430068, Peoples R China
[3] Univ Edinburgh, Inst Infrastructure & Environm, Sch Engn, Edinburgh EH9 3FG, Scotland
关键词
Curing condition; Structural adhesive; Glass transition temperature; Conditional tabular generative adversarial; networks; Artificial neural network; STEEL STRUCTURES; DURABILITY; JOINTS;
D O I
10.1016/j.engappai.2023.107796
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Owing to its structural advantages, adhesively bonding fibre-reinforced polymers have been a promising solution for strengthening constructions. However, the effectiveness of this technique is significantly influenced by the material properties of the adhesive layer, which are largely determined by its curing condition. A comprehensive analysis of the effect of curing conditions on structural adhesives is hampered by the lack of sufficient experimental data. To mitigate such a limitation, this present study utilises a deep machine learning (ML) tool, the conditional tabular generative adversarial networks (CTGAN), to generate plausible synthetic dataset for developing a robust data-driven model. An artificial neural network (ANN) was trained on synthetic data and tested on real data, following the "Train on Synthetic - Test on Real" philosophy. The ultimately developed CTGAN-ANN model was validated by newly conducted experiments and several published studies (R2 >= 0.95), which demonstrated the ability to provide accurate estimates of the glass transition temperature values of the polymer adhesive. A comprehensive evaluation of the effect of each curing condition variable on the adhesive was performed, which revealed the underlying relationships, indicating that curing temperature and curing time have a positive effect, but that curing humidity has a negative effect. The ML model developed could inform the practical use of the structural adhesive in civil engineering.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Evaluating different generator networks of a conditional generative adversarial network
    Fetty, L.
    Kuess, P.
    Nesvacil, N.
    Nyholm, T.
    Georg, D.
    Furtado, H.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S555 - S555
  • [2] Data Augmentation of a Corrosion Dataset for Defect Growth Prediction of Pipelines Using Conditional Tabular Generative Adversarial Networks
    Ma, Haonan
    Geng, Mengying
    Wang, Fan
    Zheng, Wenyue
    Ai, Yibo
    Zhang, Weidong
    MATERIALS, 2024, 17 (05)
  • [3] Generating Realistic Synthetic Traffic Data using Conditional Tabular Generative Adversarial Networks for Intelligent Transportation Systems
    Nigam, Archana
    Srivastava, Sanjay
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 2881 - 2886
  • [4] The effect of loss function on conditional generative adversarial networks
    Abu-Srhan, Alaa
    Abushariah, Mohammad A. M.
    Al-Kadi, Omar S.
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (09) : 6977 - 6988
  • [5] Generative Adversarial Networks for Data Augmentation in Structural Adhesive Inspection
    Peres, Ricardo Silva
    Azevedo, Miguel
    Araujo, Sara Oleiro
    Guedes, Magno
    Miranda, Fabio
    Barata, Jose
    APPLIED SCIENCES-BASEL, 2021, 11 (07):
  • [6] Conditional Independence Testing using Generative Adversarial Networks
    Bellot, Alexis
    van der Schaar, Mihaela
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [7] Ultrasonic imaging using conditional generative adversarial networks
    Molinier, Nathan
    Painchaud-April, Guillaume
    Le Duff, Alain
    Toews, Matthew
    Belanger, Pierre
    ULTRASONICS, 2023, 133
  • [8] Clustering Using Conditional Generative Adversarial Networks (cGANs)
    Ruzicka, Marek
    Dopiriak, Matus
    2023 33RD INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, RADIOELEKTRONIKA, 2023,
  • [9] Phase Retrieval Using Conditional Generative Adversarial Networks
    Uelwer, Tobias
    Oberstrass, Alexander
    Harmeling, Stefan
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 731 - 738
  • [10] Generation of Synthetic Tabular Healthcare Data Using Generative Adversarial Networks
    Nik, Alireza Hossein Zadeh
    Riegler, Michael A.
    Halvorsen, Pal
    Storas, Andrea M.
    MULTIMEDIA MODELING, MMM 2023, PT I, 2023, 13833 : 434 - 446