Graphene/Ta2O5 co-coating to improve the electrochemical performance of cathode material LiNi0.5Co0.2Mn0.3O2 for lithium-ion batteries

被引:1
|
作者
Zhang, Xueqian [1 ]
Dang, Mengyue [1 ]
Li, Ying [1 ,2 ]
Zhang, Ruijin [1 ]
Nan, Quanhui [1 ]
Li, Mingqi [1 ]
Zhu, Mingyuan [1 ]
Jin, Hongming [1 ]
Li, Wenxian [1 ,2 ,3 ,4 ]
机构
[1] Shanghai Univ, Inst Mat, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Inst Sustainable Energy, Coll Sci, Shanghai 200444, Peoples R China
[3] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[4] Univ New South Wales, Mat & Mfg Futures Inst, Sydney, NSW 2052, Australia
来源
CHEMISTRYSELECT | 2024年 / 9卷 / 05期
关键词
Conducting materials; Graphene; Surface chemistry; Cathode material; Lithium-ion battery; CYCLING PERFORMANCE; STABILITY; SURFACE; LINI1/3CO1/3MN1/3O2; OXIDE; NI; STATE;
D O I
10.1002/slct.202304832
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The cycling and rate capabilities of LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode material under high cut-off voltage (>= 4.5 V) and high current density have attracted much attention. However, the material's insufficient intrinsic electronic/ion conductivity and interface instability are still key issues restricting its electrochemical performance.In this paper, a graphene/Ta2O5 co-coating layer is successfully fabricated on the surface of NCM523 to form a cathode material of GTa-NCM523 to enhance both the electron and lithium-ion transport during cathode operation. The GTa-NCM523 cathode material achieves a discharge specific capacity of 147.4 mAh g(-1) after 600 cycles at a voltage of 3.0-4.5 V and a rate of 1 C (180 mA g(-1)) with a capacity retention rate of 81.4 %. In contrast, the uncoated NCM523 only retains 63.2 % of its capability. At an elevated rate of 10 C (1800 mA g(-1)), the GTa-NCM523 can achieve a discharge-specific capacity of up to 113.5 mAh g(-1), which is 43.7 % higher than the uncoated NCM523. The co-coating layer can inhibit HF erosion and accelerate the movement of lithium-ions and electrons, which account for the superior electrochemical characteristics of the co-coating layer comprised of graphene and Ta2O5.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Resynthesis and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 from spent cathode material of lithium-ion batteries
    Liu, Pengcheng
    Xiao, Li
    Tang, Yiwei
    Zhu, Yirong
    Chen, Han
    Chen, Yifeng
    VACUUM, 2018, 156 : 317 - 324
  • [3] Regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Zhou, Hongming
    Zhao, Xiuxiu
    Yin, Chengjie
    Li, Jian
    ELECTROCHIMICA ACTA, 2018, 291 : 142 - 150
  • [4] Improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by double-layer coating with graphene oxide and V2O5 for lithium-ion batteries
    Luo, Wenbin
    Zheng, Baolin
    APPLIED SURFACE SCIENCE, 2017, 404 : 310 - 317
  • [5] Multifunctional ZnO/graphene co-coating on LiNi0.5Co0.2Mn0.3O2 cathode material for improving high voltage electrochemical performances
    Nan, Quanhui
    Li, Ying
    Zhang, Ruijin
    Zhang, Xueqian
    Li, Mingqi
    Zhu, Mingyuan
    Jin, Hongming
    Xu, Chaoxiang
    Li, Wenxian
    CERAMICS INTERNATIONAL, 2024, 50 (05) : 7336 - 7345
  • [6] Improved electrochemical performances of LiNi0.5Co0.2Mn0.3O2 modified by Graphene/V2O5 co-coating
    Li, Ying
    Xu, Chaoxiang
    Dang, Mengyue
    Yu, Chunpeng
    He, Yulin
    Liu, Wenbo
    Jin, Hongming
    Li, Wenxian
    Zhu, Mingyuan
    Zhang, Jiujun
    CERAMICS INTERNATIONAL, 2021, 47 (15) : 21759 - 21768
  • [7] Improved Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode with Different Carbon Additives for Lithium-ion Batteries
    Chen, Xiaolan
    Lu, Wanzheng
    Chen, Chen
    Xue, Mingzhe
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (01): : 296 - 304
  • [8] The effect of drying methods on the structure and performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium-ion batteries
    Zhang, Yang
    Cui, Can
    He, Yao
    Liu, Jie
    Song, Ye
    Song, Zheng
    Xu, Heng
    Huang, Shanshan
    Bei, Yiying
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 262
  • [9] Effects of LaPO4 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries
    Jiang, Xiaodong
    Yuan, Zhentao
    Liu, Jianxiong
    Jin, Xin
    Jin, Liying
    Dong, Peng
    Zhang, Yingjie
    Yao, Yuhan
    Cheng, Qi
    Liu, Cheng
    Zhang, Yannan
    Yu, Xiaohua
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (03): : 2341 - 2354
  • [10] Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
    Tang, Xiaodong
    Guo, Qiankun
    Zhou, Miaomiao
    Zhong, Shengwen
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 40 : 278 - 286