Research on energy consumption prediction of public buildings based on improved support vector machine

被引:1
|
作者
Yang, Liyao [1 ]
Ma, Hongyan [2 ]
Zhang, Yingda [1 ]
Li, Shengyan [1 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Elect & Informat Engn, Beijing, Peoples R China
[2] Beijing Univ Civil Engn & Architecture, Beijing Key Lab Intelligent Proc Bldg Big Data, Inst Distributed Energy Storage Safety Big Data, Sch Elect & Informat Engn, Beijing, Peoples R China
关键词
Sparrow Search Algorithm; Energy Consumption Prediction; Support Vector Machine; Public Building;
D O I
10.1109/CCDC58219.2023.10327420
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An improved support vector machine model for energy consumption prediction is proposed to achieve efficient energy saving in buildings. In this paper, firstly, a gray correlation analysis model is used to measure the correlation between temperature, humidity, sunlight and other factors and building energy consumption. Secondly, the sparrow search algorithm (SSA) is introduced to optimize the penalty coefficient c and kernel function parameter g of the support vector machine, and then the SSA-SVM energy consumption prediction model is established. Finally, the experimental results are analyzed by comparing with the data derived from the support vector machine prediction (SVM) model and BP neural network energy consumption prediction. The experimental results show that compared with SVM and BP neural network, the prediction results of SSA-SVM model perform better in error index, indicating that the energy consumption prediction of SSA-SVM model has higher prediction accuracy; the maximum relative error of SSA-SVM prediction model is 0.0514, and the maximum relative errors of the other two models are greater than 0.55, indicating that SSA-SVM model has a higher degree of reliability.
引用
收藏
页码:2699 / 2704
页数:6
相关论文
共 50 条
  • [1] Prediction of Energy Consumption in Buildings Using Support Vector Machine
    Samardzioska, Todorka
    Pancovska, Valentina Zileska
    Petrusheva, Silvana
    Sekovska, Blagica
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2021, 28 (02): : 649 - 656
  • [2] Prediction of energy consumption in buildings using support vector machine
    Samardzioska, Todorka
    Zileska Pancovska, Valentina
    Petrusheva, Silvana
    Sekovska, Blagica
    Tehnicki Vjesnik, 2021, 28 (02): : 649 - 656
  • [3] Energy consumption prediction and diagnosis of public buildings based on support vector machine learning: A case study in China
    Liu, Yang
    Chen, Hongyu
    Zhang, Limao
    Wu, Xianguo
    Wang, Xian-jia
    JOURNAL OF CLEANER PRODUCTION, 2020, 272
  • [4] A novel energy consumption prediction method for chillers based on an improved support vector machine
    Cai, Jianyang
    Yang, Haidong
    Xu, Kangkang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 6801 - 6816
  • [5] Hourly Energy Consumption Forecasting for Office Buildings Based on Support Vector Machine
    Xiao R.
    Wei Z.
    Zhai X.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2021, 55 (03): : 331 - 336
  • [6] Energy consumption prediction and energy-saving suggestions of public buildings based on machine learning
    Chen, Cheng
    Gao, Zhiming
    Zhou, Xuan
    Wang, Miao
    Yan, Junwei
    ENERGY AND BUILDINGS, 2024, 320
  • [7] Prediction of energy consumption in hotel buildings via support vector machines
    Shao, Minglei
    Wang, Xin
    Bu, Zhen
    Chen, Xiaobo
    Wang, Yuqing
    SUSTAINABLE CITIES AND SOCIETY, 2020, 57
  • [8] Parallel Support Vector Machines Applied to the Prediction of Multiple Buildings Energy Consumption
    Zhao, Hai Xiang
    Magoules, Frederic
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2010, 4 (02) : 231 - 249
  • [9] Research on mapreduce job performance prediction method based on improved support vector machine
    Zhao, Guozeng
    Li, Yuanbo
    Sun, Zeyu
    AGRO FOOD INDUSTRY HI-TECH, 2017, 28 (03): : 923 - 926
  • [10] Network traffic prediction based on improved support vector machine
    Wang Q.-M.
    Fan A.-W.
    Shi H.-S.
    International Journal of System Assurance Engineering and Management, 2017, 8 (Suppl 3) : 1976 - 1980