The n-dimensional analogue of a variational problem of Euler

被引:1
|
作者
Dierkes, Ulrich [1 ]
Huisken, Gerhard [2 ,3 ]
机构
[1] Univ Duisburg Essen, Fak Math, Thea Leymann Str 9, D-45147 Essen, Germany
[2] Univ Tubingen, Math Inst, Morgenstelle 10, D-72076 Tubingen, Germany
[3] Math Forschungsinst Oberwolfach, Schwarzwaldstr 9-11, D-77709 Oberwolfach Walke, Germany
关键词
53A10; 49Q05; 35A15; PROOF; CONES;
D O I
10.1007/s00208-023-02726-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the f-weighted area-functional epsilon( f )(M) = integral(M) (x)dH(n)(x)we prove non-existence of compact stationary surfaces when f = |x|(alpha) and alpha > -n, while for alpha = -n all spheres S-R(0) are shown to be stable and even minimizers for epsilon( f). Moreover any compact and f-stable surface is a sphere S-R(0) in case alpha = -n. Furthermore we prove stability of the minimal cones over products of spheres under suitable conditions on alpha and show non-existence of nontrivial cones in case these conditions do not hold. Finally we show that the cones over products of spheres Sk-1 x Sk-1 c R-k x R-k, k > 2, are in fact minimizers for epsilon( f ), if 1 <= alpha <= 2(k - 1). In particular the cone over the Clifford torus minimizes epsilon( f ) , f = |x|(alpha) and 1 < alpha < 2.
引用
收藏
页码:3841 / 3863
页数:23
相关论文
共 50 条