Confinement-induced nonlocality and casimir force in transdimensional systems

被引:2
|
作者
Bondarev, Igor V. [1 ]
Pugh, Michael D. [1 ]
Rodriguez-Lopez, Pablo [2 ,3 ,4 ]
Woods, Lilia M. [5 ]
Antezza, Mauro [4 ,6 ]
机构
[1] North Carolina Cent Univ, Dept Math & Phys, Durham, NC 27707 USA
[2] Univ Rey Juan Carlos, Area Electromagnetismo, Mostoles 28933, Madrid, Spain
[3] Univ Rey Juan Carlos, Grp Interdisciplinar Sistemas Complejos GISC, Mostoles 28933, Madrid, Spain
[4] Univ Montpellier, Lab Charles Coulomb L2C, UMR CNRS 5221, F-34095 Montpellier, France
[5] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
[6] Inst Univ France, 1 rue Descartes, F-75231 Paris 05, France
基金
美国国家科学基金会;
关键词
FILMS;
D O I
10.1039/d3cp03706a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study within the framework of the Lifshitz theory the long-range Casimir force for in-plane isotropic and anisotropic free-standing transdimensional material slabs. In the former case, we show that the confinement-induced nonlocality not only weakens the attraction of ultrathin slabs but also changes the distance dependence of the material-dependent correction to the Casimir force to go as contrary to the similar to 1/l dependence of that of the local Lifshitz force. In the latter case, we use closely packed array of parallel aligned single-wall carbon nanotubes in a dielectric layer of finite thickness to demonstrate strong orientational anisotropy and crossover behavior for the inter-slab attractive force in addition to its reduction with decreasing slab thickness. We give physical insight as to why such a pair of ultrathin slabs prefers to stick together in the perpendicularly oriented manner, rather than in the parallel relative orientation as one would customarily expect. We study within the framework of the Lifshitz theory the long-range Casimir force for in-plane isotropic and anisotropic free-standing transdimensional material slabs.
引用
收藏
页码:29257 / 29265
页数:9
相关论文
共 50 条
  • [1] Confinement-Induced Resonances
    Dunjko, Vanja
    Moore, Michael G.
    Bergeman, Thomas
    Olshanii, Maxim
    ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 60, 2011, 60 : 461 - 510
  • [2] Kondo impurities in nanoscopic systems: Confinement-induced regimes
    Cornaglia, PS
    Balseiro, CA
    PHYSICAL REVIEW B, 2002, 66 (11): : 1 - 5
  • [3] Confinement-Induced Polymerization of Ethylene
    Ramirez-Caballero, Gustavo E.
    Mathkari, Ashish
    Balbuena, Perla B.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (05): : 2134 - 2139
  • [4] Confinement-induced demixing and crystallization
    Jung, Gerhard
    Petersen, Charlotte F.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [5] Confinement-Induced Resonances in Low-Dimensional Quantum Systems
    Haller, Elmar
    Mark, Manfred J.
    Hart, Russell
    Danzl, Johann G.
    Reichsoellner, Lukas
    Melezhik, Vladimir
    Schmelcher, Peter
    Naegerl, Hanns-Christoph
    PHYSICAL REVIEW LETTERS, 2010, 104 (15)
  • [6] Confinement-induced resonances in ultracold atom-ion systems
    Melezhik, V. S.
    Negretti, A.
    PHYSICAL REVIEW A, 2016, 94 (02)
  • [7] Solvation force and confinement-induced phase transitions of model ultra thin films
    Bordarier, P
    Rousseau, B
    Fuchs, AH
    MOLECULAR SIMULATION, 1996, 17 (4-6) : 199 - 215
  • [8] Confinement-induced colloidal attractions in equilibrium
    Han, YL
    Grier, DG
    PHYSICAL REVIEW LETTERS, 2003, 91 (03) : 1 - 038302
  • [9] Confinement-induced freezing and the Lindemann criterion
    Tkachenko, AV
    Rabin, Y
    SOLID STATE COMMUNICATIONS, 1997, 103 (06) : 361 - 364
  • [10] Confinement-induced miscibility in polymer blends
    S. Zhu
    Y. Liu
    M. H. Rafailovich
    J. Sokolov
    D. Gersappe
    D. A. Winesett
    H. Ade
    Nature, 1999, 400 : 49 - 51