Survival analysis as semi-supervised multi-target regression for time-to-employment prediction using oblique predictive clustering trees

被引:3
|
作者
Andonovikj, Viktor [1 ,2 ]
Boskoski, Pavle [1 ]
Dzeroski, Saso [1 ]
Boshkoska, Biljana Mileva [1 ,3 ]
机构
[1] Jozef Stefan Inst, Jamova Cesta 39, Ljubljana 1000, Slovenia
[2] Jozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, Slovenia
[3] Fac Informat Studies Novo Mesto, Ljubljanska Cesta 31b, Novo Mesto 8000, Slovenia
关键词
Oblique predictive clustering trees; Survival analysis; Unemployment modelling; Public employment services; Structured output prediction; LABOR-MARKET; MODELS;
D O I
10.1016/j.eswa.2023.121246
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of estimating the time-to-employment of a jobseeker using survival analysis and oblique predictive clustering tree. Unlike standard survival analysis, oblique predictive clustering tree can handle categorical and continuous data and is capable of modelling non-linear dependences. Treating the censored data as missing data opens the possibility to perform survival analysis by using structured output prediction in semi-supervised multi-target regression setting. The effectiveness of this approach is shown on a real dataset from Public Employment Services in Slovenia, comprising time-to-employment records with jobseekers' personal and professional characteristics. The performances are compared with six state-of-the-art AI methods. To the best of our knowledge, this is the first example of using semi-supervised oblique predictive clustering tree for survival analysis.
引用
收藏
页数:11
相关论文
共 20 条
  • [1] Incremental predictive clustering trees for online semi-supervised multi-target regression
    Osojnik, Aljaz
    Panov, Pance
    Dzeroski, Saso
    MACHINE LEARNING, 2020, 109 (11) : 2121 - 2139
  • [2] Incremental predictive clustering trees for online semi-supervised multi-target regression
    Aljaž Osojnik
    Panče Panov
    Sašo Džeroski
    Machine Learning, 2020, 109 : 2121 - 2139
  • [3] Semi-supervised trees for multi-target regression
    Levatic, Jurica
    Kocev, Dragi
    Ceci, Michelangelo
    Dzeroski, Saso
    INFORMATION SCIENCES, 2018, 450 : 109 - 127
  • [4] Semi-supervised oblique predictive clustering trees
    Stepišnik T.
    Kocev D.
    PeerJ Computer Science, 2021, 7 : 1 - 20
  • [5] Semi-supervised oblique predictive clustering trees
    Stepisnik, Tomaz
    Kocev, Dragi
    PEERJ COMPUTER SCIENCE, 2021,
  • [6] Survival analysis with semi-supervised predictive clustering trees
    Roy, Bijit
    Stepis, Tomaz
    Pooled Resource Open-Access Als Clinical Trials Consortium, The
    Vens, Celine
    Dzeroski, Saso
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 141
  • [7] Option Predictive Clustering Trees for Multi-target Regression
    Osojnik, Aljaz
    Dzeroski, Saso
    Kocev, Dragi
    DISCOVERY SCIENCE, (DS 2016), 2016, 9956 : 118 - 133
  • [8] Predictive Clustering Trees for Hierarchical Multi-Target Regression
    Mileski, Vanja
    DZeroski, Saso
    Kocev, Dragi
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVI, IDA 2017, 2017, 10584 : 223 - 234
  • [9] Option predictive clustering trees for multi-target regression
    Stepisnik, Tomaz
    Osojnik, Aljaz
    Dzeroski, Saso
    Kocev, Dragi
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2020, 17 (02) : 459 - 486
  • [10] Feature selection for semi-supervised multi-target regression using genetic algorithm
    Syed, Farrukh Hasan
    Tahir, Muhammad Atif
    Rafi, Muhammad
    Shahab, Mir Danish
    APPLIED INTELLIGENCE, 2021, 51 (12) : 8961 - 8984