Weakly Supervised Cross-Domain Person Re-Identification Algorithm Based on Small Sample Learning

被引:0
|
作者
Li, Huiping [1 ]
Wang, Yan [2 ]
Zhu, Lingwei [3 ]
Wang, Wenchao [1 ]
Yin, Kangning [2 ,3 ,4 ]
Li, Ye [3 ,4 ]
Yin, Guangqiang [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610051, Peoples R China
[3] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518110, Peoples R China
[4] Kash Inst Elect & Informat Ind, Inst Publ Secur, Kash 844000, Peoples R China
关键词
person re-identification; weakly supervision; small sample; cross-domain migration;
D O I
10.3390/electronics12194186
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a weakly supervised cross-domain person re-identification (Re-ID) method based on small sample data. In order to reduce the cost of data collection and annotation, the model design focuses on extracting and abstracting the information contained in the data under limited conditions. In this paper, we focus on the problems of strong data dependence, weak cross-domain capability and low accuracy in Re-ID in weakly supervised scenarios. Our contributions are as follows: first, we implement a joint training framework with the help of small sample learning and cross-domain migration for Re-ID. Second, with the help of residual compensation and fusion attention module, the RCFA module is designed, and the model framework is built on this basis to improve the cross-domain ability of the model. Third, to solve the problem of low accuracy caused by insufficient data coverage of small samples, a fusion of shallow features and deep features is designed to enable the model to weighted fusion of shallow detail information and deep semantic information. Finally, by selecting different camera images in Market1501 dataset and DukeMTMC-reID dataset as small samples, respectively, and introducing another dataset data for joint training, we demonstrate the feasibility of this joint training framework, which can perform weakly supervised cross-domain Re-ID based on small sample data.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Cross-domain person re-identification by hybrid supervised and unsupervised learning
    Pang, Zhiqi
    Guo, Jifeng
    Sun, Wenbo
    Xiao, Yanbang
    Yu, Ming
    APPLIED INTELLIGENCE, 2022, 52 (03) : 2987 - 3001
  • [2] Cross-domain person re-identification by hybrid supervised and unsupervised learning
    Zhiqi Pang
    Jifeng Guo
    Wenbo Sun
    Yanbang Xiao
    Ming Yu
    Applied Intelligence, 2022, 52 : 2987 - 3001
  • [3] Self-Supervised Agent Learning for Unsupervised Cross-Domain Person Re-Identification
    Jiang, Kongzhu
    Zhang, Tianzhu
    Zhang, Yongdong
    Wu, Feng
    Rui, Yong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 8549 - 8560
  • [4] PROXY TASK LEARNING FOR CROSS-DOMAIN PERSON RE-IDENTIFICATION
    Huang, Houjing
    Chen, Xiaotang
    Huang, Kaiqi
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [5] Biclustering Collaborative Learning for Cross-Domain Person Re-Identification
    Pang, Zhiqi
    Guo, Jifeng
    Sun, Wenbo
    Li, Shi
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 2142 - 2146
  • [6] Adaptive Cross-domain Learning for Generalizable Person Re-identification
    Zhang, Pengyi
    Dou, Huanzhang
    Yu, Yunlong
    Li, Xi
    COMPUTER VISION - ECCV 2022, PT XIV, 2022, 13674 : 215 - 232
  • [7] Study of cross-domain person re-identification based on DCGAN
    Wei Fang
    Weinan Yi
    Lin Pang
    Victor S. Sheng
    Multimedia Tools and Applications, 2022, 81 : 36551 - 36565
  • [8] Study of cross-domain person re-identification based on DCGAN
    Fang, Wei
    Yi, Weinan
    Pang, Lin
    Sheng, Victor S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (25) : 36551 - 36565
  • [9] Cross-Domain Person Re-Identification Based on Feature Fusion
    Luo, Xianjun
    Ouyang, Zhi
    Du, Nisuo
    Song, Jingkuan
    Wei, Qin
    IEEE ACCESS, 2021, 9 : 98327 - 98336
  • [10] Learning domain invariant and specific representation for cross-domain person re-identification
    Chong, Yanwen
    Peng, Chengwei
    Zhang, Chen
    Wang, Yujie
    Feng, Wenqiang
    Pan, Shaoming
    APPLIED INTELLIGENCE, 2021, 51 (08) : 5219 - 5232