A higher-dimensional Chevalley restriction theorem for orthogonal groups

被引:1
|
作者
Song, Lei [1 ]
Xia, Xiaopeng [2 ]
Xu, Jinxing [2 ]
机构
[1] Sun Yat Sen Univ, Sch Math, 135 Xingang Xi Rd, Guangzhou 510275, Guangdong, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Chevalley restriction theorem; Invariant theory; Commuting scheme; Orthogonal groups; Pfaffians; INVARIANTS;
D O I
10.1016/j.aim.2023.109104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a higher-dimensional Chevalley restriction theorem for orthogonal groups, which was conjectured by Chen and Ngo for reductive groups. In characteristic p > 2, we also prove a weaker statement. In characteristic 0, the theorem implies that the categorical quotient of a commuting scheme by the diagonal adjoint action of the group is integral and normal. As applications, we deduce some trace identities and a certain multiplicative property of the Pfaffian over an arbitrary commutative algebra. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] On the Chevalley restriction theorem
    Tevelev, EA
    [J]. JOURNAL OF LIE THEORY, 2000, 10 (02) : 323 - 330
  • [2] KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA
    Fahrenberg, Uli
    Johansen, Christian
    Struth, Georg
    Ziemiański, Krzysztof
    [J]. Logical Methods in Computer Science, 2024, 20 (04): : 1 - 22
  • [3] A formal Chevalley restriction theorem for Kac-Moody groups
    Mokler, C
    [J]. COMPOSITIO MATHEMATICA, 2003, 135 (02) : 123 - 152
  • [4] A combinatorial characterization of higher-dimensional orthogonal packing
    Fekete, SP
    Schepers, J
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2004, 29 (02) : 353 - 368
  • [5] An exact algorithm for higher-dimensional orthogonal packing
    Fekete, Sandor P.
    Schepers, Joerg
    van der Veen, Jan C.
    [J]. OPERATIONS RESEARCH, 2007, 55 (03) : 569 - 587
  • [6] GENERALIZATION OF THE CHEVALLEY RESTRICTION THEOREM
    LUNA, D
    RICHARDSON, RW
    [J]. DUKE MATHEMATICAL JOURNAL, 1979, 46 (03) : 487 - 496
  • [7] Quotients of higher-dimensional Cremona groups
    Blanc, Jeremy
    Lamy, Stephane
    Zimmermann, Susanna
    [J]. ACTA MATHEMATICA, 2021, 226 (02) : 211 - 318
  • [8] ON THE HIGHER-DIMENSIONAL 4-VERTEX THEOREM
    VARGAS, RU
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (10): : 1353 - 1358
  • [9] CHEVALLEY RESTRICTION THEOREM FOR VECTOR-VALUED FUNCTIONS ON QUANTUM GROUPS
    Balagovic, Martina
    [J]. REPRESENTATION THEORY, 2011, 15 : 617 - 645
  • [10] A higher-dimensional Siegel-Walfisz theorem
    Bienvenu, Pierre-Yues
    [J]. ACTA ARITHMETICA, 2017, 179 (01) : 79 - 100