Reverse engineered Diophantine equations

被引:0
|
作者
Gajovic, Stevan [1 ]
机构
[1] Charles Univ Prague, Dept Algebra, Fac Math & Phys, Sokolovska 83, Prague 8, Czech Republic
关键词
Diophantine equations; Fermat's Last Theorem; Mihailescu's theorem; Runge's method; Elliptic curves; VARIETIES; POWERS;
D O I
10.1016/j.exmath.2024.125545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer a question of Samir Siksek, asked at the open problems session of the conference "Rational Points 2022", which, in a broader sense, can be viewed as a reverse engineering of Diophantine equations. For any finite set S of perfect integer powers, using Mihailescu's theorem, we construct a polynomial fS is an element of Z[x] such that the set fS(Z) contains a perfect integer power if and only if it belongs to S. We first discuss the easier case where we restrict to all powers with the same exponent. In this case, the constructed polynomials are inspired by Runge's method and Fermat's Last Theorem. Therefore we can construct a polynomial-exponential Diophantine equation whose solutions are determined in advance. (c) 2024 Elsevier GmbH. All reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Reverse engineered Diophantine equations over Q
    Santicola, Katerina
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (03): : 897 - 904
  • [2] DIOPHANTINE EQUATIONS AND DIOPHANTINE APPROXIMATIONS
    TIJDEMAN, R
    [J]. NUMBER THEORY AND APPLICATIONS, 1989, 265 : 215 - 243
  • [3] DIOPHANTINE EQUATIONS
    SRINIVAS, V
    [J]. CURRENT SCIENCE, 1990, 59 (12): : 589 - 594
  • [4] DIOPHANTINE EQUATIONS
    OPPENHEIM, A
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (01): : 71 - &
  • [5] ON THE DIOPHANTINE EQUATIONS
    Chotchaisthit, Somchit
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 34 (01): : 27 - 38
  • [6] DIOPHANTINE EQUATIONS
    KUROSAKA, RT
    [J]. BYTE, 1986, 11 (03): : 343 - &
  • [7] DIOPHANTINE EQUATIONS
    FOSTER, LL
    ALEX, LJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (01): : 62 - 62
  • [8] Diophantine approximations, diophantine equations, transcendence and applications
    Shorey, T. N.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2006, 37 (01): : 9 - 39
  • [9] NEW APPLICATIONS OF DIOPHANTINE APPROXIMATIONS TO DIOPHANTINE EQUATIONS
    SHOREY, TN
    TIJDEMAN, R
    [J]. MATHEMATICA SCANDINAVICA, 1976, 39 (01) : 5 - 18
  • [10] DIOPHANTINE EQUATIONS IN PARTITIONS
    GUPTA, H
    [J]. MATHEMATICS OF COMPUTATION, 1984, 42 (165) : 225 - 229