On contraction of functional differential equations with Markovian switching

被引:0
|
作者
Tran, Ky Quan [1 ]
Ngoc, Pham Huu Anh [2 ]
机构
[1] State Univ New York, Dept Appl Math & Stat, Korea Campus,Songdo Moonhwa Ro 119-2, Incheon 21985, South Korea
[2] Vietnam Natl Univ Ho Chi Minh City, Int Univ, Dept Math, Ho Chi Minh City, Vietnam
关键词
Exponential contraction in mean square; Functional differential equations; Markovian switching; EXTREME STABILITY; SYSTEMS;
D O I
10.1016/j.sysconle.2023.105675
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
General functional differential equations with Markovian switching are considered. Exponential contraction in mean square of such equations is investigated. By a novel approach, explicit criteria for the exponential contraction in mean square are derived. An illustrative example is given.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A CLASS OF STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MARKOVIAN SWITCHING
    Hu, Yangzi
    Wu, Fuke
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2011, 23 (02) : 223 - 252
  • [2] Exponential ergodicity for stochastic functional differential equations with Markovian switching
    Zhai, Yafei
    Xi, Fubao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 534 (01)
  • [3] Robust stability of a class of stochastic functional differential equations with Markovian switching
    Lichao Feng
    Shoumei Li
    Zhiyou Liu
    Shiqiu Zheng
    Advances in Difference Equations, 2016
  • [4] Exponential stability of neutral stochastic differential functional equations with Markovian switching
    Li, Xining
    Zhang, Qimin
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 377 - 381
  • [5] Numerical solutions of neutral stochastic functional differential equations with Markovian switching
    Yuru Hu
    Huabin Chen
    Chenggui Yuan
    Advances in Difference Equations, 2019
  • [6] Asymptotic stability and boundedness of stochastic functional differential equations with Markovian switching
    Feng, Lichao
    Li, Shoumei
    Mao, Xuerong
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2016, 353 (18): : 4924 - 4949
  • [7] The strict stability of impulsive stochastic functional differential equations with Markovian switching
    Liu, Dezhi
    Yang, Guiyuan
    Zhang, Wei
    World Academy of Science, Engineering and Technology, 2011, 50 : 805 - 810
  • [8] Stability of a class of neutral stochastic functional differential equations with Markovian switching
    Song, Ruili
    Lu, Boliang
    Zhu, Quanxin
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (15): : 2043 - 2054
  • [9] Stability in distribution of neutral stochastic functional differential equations with Markovian switching
    Hu, Guixin
    Wang, Ke
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) : 757 - 769
  • [10] Robust stability of a class of stochastic functional differential equations with Markovian switching
    Feng, Lichao
    Li, Shoumei
    Liu, Zhiyou
    Zheng, Shiqiu
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,