Study of the independent cooling performance of adiabatic compressed air energy storage system

被引:3
|
作者
Jiajun, Li [1 ,2 ]
Hang, Li [2 ]
Zheng, Cao [1 ]
Jianqiang, Deng [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shaanxi, Peoples R China
[2] Zhengzhou Univ, Sch Mech & Power Engn, Zhengzhou 450001, Henan, Peoples R China
关键词
Adiabatic compressed air energy storage; system; Ejectors; Cold air supply; Chilled water supply; POWER-SYSTEM; TECHNOLOGIES; OPTIMIZATION; INTEGRATION;
D O I
10.1016/j.ijrefrig.2023.05.006
中图分类号
O414.1 [热力学];
学科分类号
摘要
The adiabatic compressed air energy storage (A-CAES) system can realize the triple supply of cooling, heat, and electricity output. With the aim of maximizing the cooling generation and electricity production with seasonal variations, this paper proposed three advanced A-CAES refrigeration systems characterized by chilled water supply, cold air supply, and hybrid supply systems, respectively. Corresponding system models were established with a storage capacity of 5000 m3 and an operating pressure range of 4.6-10 MPa. After validating the simulation model with literature data, a parametric study and following economy analysis were conducted in different seasons. The optimal expansion unit configurations of the three systems were confirmed based on their cooling and electricity production under different configurations. Results showed that the maximum cooling capacity of the three systems under optimal configurations are 20.33GJ, 40.05GJ, and 45.05GJ, which can supply 100, 197, and 213 households, respectively. The enhanced cooling capacity of the three systems indicated promising alternatives for refrigeration equipment in the residential area, reducing investment and peak power consumption simultaneously. In addition, the static payback periods of the three systems presented in this study are 21.45 years, 11.88 years, and 16.50 years, respectively. The expansion unit configuration of the hybrid cooling system was confirmed to be the most suitable configuration for cooling maximization. This study can provide a reference for the system design integrated with A-CAES technology for cooling supply and cost savings.
引用
收藏
页码:155 / 170
页数:16
相关论文
共 50 条
  • [1] Performance study of an advanced adiabatic compressed air energy storage system
    Mozayeni, Hamidreza
    Negnevitsky, Michael
    Wang, Xiaolin
    Cao, Feng
    Peng, Xueyuan
    1ST INTERNATIONAL CONFERENCE ON ENERGY AND POWER, ICEP2016, 2017, 110 : 71 - 76
  • [2] Research of the Performance of the Adiabatic Compressed Air Energy Storage and Power Generation System
    Zhao, Bo
    Song, Jie
    Fang, Xiangjun
    Han, Ying
    2016 INTERNATIONAL CONFERENCE ON POWER ENGINEERING & ENERGY, ENVIRONMENT (PEEE 2016), 2016, : 380 - 391
  • [3] Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage
    Li, Ruixiong
    Wang, Huanran
    Zhang, Haoran
    RENEWABLE ENERGY, 2019, 138 : 326 - 339
  • [4] Research on Output Characteristics of Cooling, Heating and Electricity of Adiabatic Compressed Air Energy Storage System
    Kong, Shuting
    Di, Yanqiang
    Li, Yanyi
    Li, Xiaona
    Weng, Yu
    TRENDS IN ENVIRONMENTAL SUSTAINABILITY AND GREEN ENERGY, 2023, : 142 - 154
  • [5] Energy and exergy analysis of adiabatic compressed air energy storage system
    Szablowski, Lukasz
    Krawczyk, Piotr
    Badyda, Krzysztof
    Karellas, Sotirios
    Kakaras, Emmanuel
    Bujalski, Wojciech
    ENERGY, 2017, 138 : 12 - 18
  • [6] Research on energy storage operation modes in a cooling, heating and power system based on advanced adiabatic compressed air energy storage
    Han, Zhonghe
    Sun, Ye
    Li, Peng
    ENERGY CONVERSION AND MANAGEMENT, 2020, 208 (208)
  • [7] ADVANCED ADIABATIC COMPRESSED AIR ENERGY STORAGE
    Chaaran, A.
    Narendhar, R.
    Karthikeyan, D.
    2018 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES), 2018, : 737 - 741
  • [8] Adiabatic compressed air energy storage technology
    Barbour, Edward
    Pottie, Daniel L.
    JOULE, 2021, 5 (08) : 1914 - 1920
  • [9] Performance optimization of adiabatic compressed air energy storage with ejector technology
    Guo, Zuogang
    Deng, Guangyi
    Fan, Yongchun
    Chen, Guangming
    APPLIED THERMAL ENGINEERING, 2016, 94 : 193 - 197
  • [10] Thermodynamic performance analysis of advanced adiabatic compressed air energy storage system auxiliary heating
    Han, Zhonghe
    An, Peng
    Guo, Senchuang
    Jiang, Kuizhen
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2020, 41 (08): : 243 - 250