Oversampling on a class of symmetric regular de Branges spaces

被引:0
|
作者
Silva, Luis O. [1 ]
Toloza, Julio H. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Dept Fis Matemat, Inst Invest Matemat Aplicadas & Sistemas, Mexico City, DF, Mexico
[2] Univ Nacl Sur UNS, Dept Matemat, Inst Matemat INMABB, CONICET, Bahia Blanca, Argentina
关键词
de Branges spaces; oversampling; sampling theory; canonical systems; SAMPLING THEOREMS; INTERPOLATION;
D O I
10.1080/17476933.2023.2283879
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A de Branges space B is regular if the constants belong to its space of associated functions and is symmetric if it is isometrically invariant under the map F(z) bar right arrow F(-z). Let K-B(z, w) be the reproducing kernel in B and S-B be the operator of multiplication by the independent variable with maximal domain in B. Loosely speaking, we say that B has the l(p)-oversampling property relative to a proper subspace A of it, with p is an element of (2, infinity], if there exists J(AB) : C x C -> C such that J(center dot, w) is an element of B for all w is an element of C, Sigma(lambda is an element of sigma (SBP)) (vertical bar J(AB)(Z, lambda)vertical bar/K-B(lambda, lambda)(1/2))(p/(p-1)) < infinity and F(Z) = Sigma(lambda is an element of sigma (SB gamma)) (vertical bar J(AB)(Z, lambda)vertical bar/K-B(lambda, lambda)F(lambda), for all F is an element of A and almost every self-adjoint extension S-B(gamma) of S-B. This definition is motivated by the well-known oversampling property of Paley-Wiener spaces. In this paper, we provide sufficient conditions for a symmetric, regular de Branges space to have the l(p)-oversampling property relative to a chain of de Branges subspaces of it.
引用
收藏
页码:2118 / 2137
页数:20
相关论文
共 50 条
  • [1] Oversampling and Undersampling in de Branges Spaces Arising from Regular Schrodinger Operators
    Silva, Luis O.
    Toloza, Julio H.
    Uribe, Alfredo
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (05) : 2303 - 2324
  • [2] Oversampling and Undersampling in de Branges Spaces Arising from Regular Schrödinger Operators
    Luis O. Silva
    Julio H. Toloza
    Alfredo Uribe
    Complex Analysis and Operator Theory, 2019, 13 : 2303 - 2324
  • [3] Oversampling and aliasing in de Branges spaces arising from Bessel operators
    Toloza, Julio H.
    Uribe, Alfredo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (01)
  • [4] The Smirnov Class for de Branges–Rovnyak Spaces
    Emmanuel Fricain
    Andreas Hartmann
    William T. Ross
    Dan Timotin
    Results in Mathematics, 2022, 77
  • [5] The Smirnov Class for de Branges-Rovnyak Spaces
    Fricain, Emmanuel
    Hartmann, Andreas
    Ross, William T.
    Timotin, Dan
    RESULTS IN MATHEMATICS, 2022, 77 (03)
  • [6] De Branges spaces of entire functions symmetric about the origin
    Kaltenback, Michael
    Winkler, Henrik
    Woracek, Harald
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (04) : 483 - 509
  • [7] De Branges Spaces of Entire Functions Symmetric About the Origin
    Michael Kaltenbäck
    Henrik Winkler
    Harald Woracek
    Integral Equations and Operator Theory, 2006, 56 : 483 - 509
  • [8] De Branges spaces and Fock spaces
    Baranov, Anton
    Bommier-Hato, Helene
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (7-8) : 907 - 930
  • [9] Sampling Theory Associated with a Symmetric Operator with Compact Resolvent and De Branges Spaces
    Antonio G. García
    Miguel A. Hernández-Medina
    Mediterranean Journal of Mathematics, 2005, 2 : 345 - 356
  • [10] Sampling theory associated with a symmetric operator with compact resolvent and De Branges spaces
    Garcia, Antonio G.
    Hernandez-Medina, Miguel A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2005, 2 (03) : 345 - 356