Improving the Quantitative Analysis of Breast Microcalcifications: A Multiscale Approach

被引:1
|
作者
Marasinou, Chrysostomos [1 ]
Li, Bo [2 ]
Paige, Jeremy [2 ]
Omigbodun, Akinyinka [1 ]
Nakhaei, Noor [3 ]
Hoyt, Anne [2 ]
Hsu, William [1 ]
机构
[1] UCLA, David Geffen Sch Med, Dept Radiol Sci, Med & Imaging Informat, 924 Westwood Blvd,Ste 420, Los Angeles, CA 90024 USA
[2] UCLA, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA 90095 USA
[3] UCLA, Samueli Sch Engn, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Breast cancer; Full-field digital mammography; Microcalcifications; Segmentation; CLUSTERED MICROCALCIFICATIONS; SEGMENTATION; MAMMOGRAMS; CONNECTIONS; CANCER;
D O I
10.1007/s10278-022-00751-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Accurate characterization of microcalcifications (MCs) in 2D digital mammography is a necessary step toward reducing the diagnostic uncertainty associated with the callback of indeterminate MCs. Quantitative analysis of MCs can better identify MCs with a higher likelihood of ductal carcinoma in situ or invasive cancer. However, automated identification and segmentation of MCs remain challenging with high false positive rates. We present a two-stage multiscale approach to MC segmentation in 2D full-field digital mammograms (FFDMs) and diagnostic magnification views. Candidate objects are first delineated using blob detection and Hessian analysis. A regression convolutional network, trained to output a function with a higher response near MCs, chooses the objects which constitute actual MCs. The method was trained and validated on 435 screening and diagnostic FFDMs from two separate datasets. We then used our approach to segment MCs on magnification views of 248 cases with amorphous MCs. We modeled the extracted features using gradient tree boosting to classify each case as benign or malignant. Compared to state-of-the-art comparison methods, our approach achieved superior mean intersection over the union (0.670 +/- 0.121 per image versus 0.524 +/- 0.034 per image), intersection over the union per MC object (0.607 +/- 0.250 versus 0.363 +/- 0.278) and true positive rate of 0.744 versus 0.581 at 0.4 false positive detections per square centimeter. Features generated using our approach outperformed the comparison method (0.763 versus 0.710 AUC) in distinguishing amorphous calcifications as benign or malignant.
引用
收藏
页码:1016 / 1028
页数:13
相关论文
共 50 条
  • [1] Improving the Quantitative Analysis of Breast Microcalcifications: A Multiscale Approach
    Chrysostomos Marasinou
    Bo Li
    Jeremy Paige
    Akinyinka Omigbodun
    Noor Nakhaei
    Anne Hoyt
    William Hsu
    [J]. Journal of Digital Imaging, 2023, 36 : 1016 - 1028
  • [2] Multiscale approach to provide a better physicochemical description of women breast microcalcifications
    Petay, Margaux
    Cherfan, Maguy
    Bouderlique, Elise
    Reguer, Solenn
    Mathurin, Jeremie
    Dazzi, Alexandre
    L'Heronde, Maeva
    Daudon, Michel
    Letavernier, Emmanuel
    Deniset-Besseau, Ariane
    Bazin, Dominique
    [J]. COMPTES RENDUS CHIMIE, 2022, 25 : 553 - 576
  • [3] A Combined Approach of Multiscale Texture Analysis and Interest Point/Corner Detectors for Microcalcifications Diagnosis
    Losurdo, Liliana
    Fanizzi, Annarita
    Basile, Teresa M. A.
    Bellotti, Roberto
    Bottigli, Ubaldo
    Dentamaro, Rosalba
    Didonna, Vittorio
    Fausto, Alfonso
    Massafra, Raffaella
    Monaco, Alfonso
    Moschetta, Marco
    Popescu, Ondina
    Tamborra, Pasquale
    Tangaro, Sabina
    La Forgia, Daniele
    [J]. BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2018, PT I, 2018, 10813 : 302 - 313
  • [4] Detection of microcalcifications in breast tomosynthesis reconstructed with multiscale bilateral filtering regularization
    Samala, Ravi K.
    Chan, Heang-Ping
    Lu, Yao
    Hadjiiski, Lubomir
    Wei, Jun
    Sahiner, Berkman
    Helvie, Mark
    [J]. MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS, 2013, 8670
  • [5] Raman analysis of microcalcifications in male breast cancer
    Caldarone, Alessandro
    Piccotti, Francesca
    Morasso, Carlo
    Truffi, Marta
    Sottotetti, Federico
    Guerra, Chiara
    Albasini, Sara
    Agozzino, Manuela
    Villani, Laura
    Corsi, Fabio
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 263
  • [6] Classification of microcalcifications in digitized mammograms using multiscale statistical texture analysis
    Kramer, Dani
    Aghdasi, Farzin
    [J]. Proceedings of the South African Symposium on Communications and Signal Processing, COMSIG, 1998, : 121 - 126
  • [7] Classification of microcalcifications in digitised mammograms using multiscale statistical texture analysis
    Kramer, D
    Aghdasi, F
    [J]. PROCEEDINGS OF THE 1998 SOUTH AFRICAN SYMPOSIUM ON COMMUNICATIONS AND SIGNAL PROCESSING: COMSIG '98, 1998, : 121 - 126
  • [8] A QUANTITATIVE-ANALYSIS OF THE SPATIAL RELATIONSHIPS OF GROUPED MICROCALCIFICATIONS DEMONSTRATED ON XEROMAMMOGRAPHY IN BENIGN AND MALIGNANT BREAST DISEASE
    HANSELL, DM
    COOKE, JC
    PARSONS, CA
    EVANS, SH
    DANCE, DR
    BLISS, JM
    ILESLEY, I
    [J]. BRITISH JOURNAL OF RADIOLOGY, 1988, 61 (721): : 21 - 25
  • [9] Quantitative analysis of performance degradation in movable MEMS devices by a multiscale approach
    Cheng, Jiaxing
    Chen, Xuanyi
    Li, Zhaoxia
    Lu, Junxi
    Liu, Bangjian
    [J]. ENGINEERING FAILURE ANALYSIS, 2024, 159
  • [10] Quantitative analysis of performance degradation in movable MEMS devices by a multiscale approach
    Cheng, Jiaxing
    Chen, Xuanyi
    Li, Zhaoxia
    Lu, Junxi
    Liu, Bangjian
    [J]. Engineering Failure Analysis, 2024, 159