State of Charge Estimation for Power Battery Using Improved Extended Kalman Filter Method Based on Neural Network

被引:0
|
作者
Liu, Xiaoyu [1 ]
Zhang, Xiang [2 ]
机构
[1] Chongqing Normal Univ, Natl Ctr Appl Math Chongqing, Chongqing 401331, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 18期
关键词
extended Kalman filter algorithm; biogeography-based optimization algorithm; BP neural network; state of charge estimate; MANAGEMENT-SYSTEMS; PARAMETER-ESTIMATION; SOC ESTIMATION; PACKS;
D O I
10.3390/app131810547
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In order to enhance the accuracy of the traditional extended Kalman filter (EKF) algorithm in the estimation of the state of charge (SoC) of power batteries, we first derived the state space equation and measurement equation of lithium power batteries based on the Thevenin battery model and the modified Ampere-Hour integral algorithm. Then, the basic principles of EKF, backpropagation neural networks (BPNNs), and a biogeography-based optimization (BBO) algorithm were analyzed, and the arc curve mobility model was used to improve the global search ability of the BBO algorithm. By combining these three algorithms, this paper proposes a BP neural network method based on the BBO algorithm. This method uses the BBO algorithm to optimize the incipient weight and threshold of the BP neural network and uses this improved neural network to modify the estimated value of the extended Kalman filter algorithm (BBOBP-EKF). Finally, the BBOBP-EKF algorithm, the extended Kalman filter algorithm based on the BP neural network (BP-EKF), and the EKF algorithm are used to estimate the error value of the SOC of a power battery, and according to the experimental data, it was confirmed that the proposed BBOBP-EKF algorithm has been improved compared to other algorithms with respect to each error index term, in which the maximum error is 1% less than that of the BP-EKF algorithm and 2.4% less than that of the EKF algorithm, the minimum error is also the smallest, and the estimation accuracy is improved compared to the traditional algorithms.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Power battery state of charge estimation based on extended Kalman filter
    Wang, Qi
    Feng, Xiaoyi
    Zhang, Bo
    Gao, Tian
    Yang, Yan
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2019, 11 (01)
  • [2] A Battery State of Charge Estimation Method with Extended Kalman Filter
    Zhang, Fei
    Liu, Guangjun
    Fang, Lijin
    2008 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1-3, 2008, : 1008 - +
  • [3] State of Charge Estimation of Power Lithium Battery Based on Extended Kalman Filter
    Feng, Huizong
    Qin, Liangyan
    Xu, Yang
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 518 - 523
  • [4] Improved extended Kalman filter for state of charge estimation of battery pack
    Sepasi, Saeed
    Ghorbani, Reza
    Liaw, Bor Yann
    JOURNAL OF POWER SOURCES, 2014, 255 : 368 - 376
  • [5] Battery State of Charge Estimation Using Extended Kalman Filter
    Lopes da Costa, Sonia Carina
    Araujo, Armando Sousa
    Carvalho, Adrian da Silva
    2016 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION (SPEEDAM), 2016, : 1085 - 1092
  • [6] State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter
    Chen, Cheng
    Xiong, Rui
    Yang, Ruixin
    Shen, Weixiang
    Sun, Fengchun
    JOURNAL OF CLEANER PRODUCTION, 2019, 234 : 1153 - 1164
  • [7] State of Charge Estimation of Lithium Battery Based on Improved Correntropy Extended Kalman Filter
    Duan, Jiandong
    Wang, Peng
    Ma, Wentao
    Qiu, Xinyu
    Tian, Xuan
    Fang, Shuai
    ENERGIES, 2020, 13 (16)
  • [8] State of charge estimation of vanadium redox battery based on improved extended Kalman filter
    Qiu, Ya
    Li, Xin
    Chen, Wei
    Duan, Ze-min
    Yu, Ling
    ISA TRANSACTIONS, 2019, 94 : 326 - 337
  • [9] Data-Driven State of Charge Estimation for Power Battery With Improved Extended Kalman Filter
    Liu, Xingtao
    Li, Qiule
    Wang, Li
    Lin, Mingqiang
    Wu, Ji
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [10] Data-Driven State of Charge Estimation for Power Battery With Improved Extended Kalman Filter
    Liu, Xingtao
    Li, Qiule
    Wang, Li
    Lin, Mingqiang
    Wu, Ji
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72