Thermal stability and tunneling radiation in Van der Waals black hole

被引:5
|
作者
Ditta, Allah [1 ,2 ]
Xia, Tiecheng [1 ,2 ]
Ali, Riasat [1 ,2 ]
Mustafa, G. [3 ,4 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
[3] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
[4] New Uzbekistan Univ, Mustaqillik Ave 54, Tashkent 100007, Uzbekistan
基金
中国国家自然科学基金;
关键词
THERMODYNAMICS;
D O I
10.1016/j.nuclphysb.2023.116287
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this manuscript, we analyze the thermodynamic properties of the Van der Waals black hole. For this purpose, we calculate the geometric mass, Hawking temperature, thermodynamic mass, heat capacity, and Gibbs free energy. By studying the properties of mass and temperature, we depict the physical existence of Van der Waals black hole solutions. We calculate the mass of the black hole by using the first law of thermodynamics, then calculate the heat capacity and Gibbs free energy to discuss the phase transition of the Van der Waals black hole. We observe that both the Van der Waals parameters a and b have a significant effect on the thermodynamic properties of the black hole. Additionally, we compute the energy emission rate and show that the emission rate is directly proportional to the Van der Waals parameter. Furthermore, we investigate the effect of quantum gravity on the Van der Waals black hole produced by first-order gravity and also employ the Lagrangian equation, which has been modified by the generalized uncertainty principle (GUP). The tunneling radiation of a Van der Waals black hole is calculated after solving the field equations.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [1] Van der Waals black hole
    Rajagopal, Aruna
    Kubiznak, David
    Mann, Robert B.
    PHYSICS LETTERS B, 2014, 737 : 277 - 279
  • [2] Geometrothermodynamics of Van der Waals black hole
    Yumin Hu
    Juhua Chen
    Yongjiu Wang
    General Relativity and Gravitation, 2017, 49
  • [3] Geometrothermodynamics of Van der Waals black hole
    Hu, Yumin
    Chen, Juhua
    Wang, Yongjiu
    GENERAL RELATIVITY AND GRAVITATION, 2017, 49 (12)
  • [4] Van der Waals black hole as a heat engine
    Roy, Tanusree
    Debnath, Ujjal
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (17):
  • [5] The Kerr–Newman black hole as a rotating Van der Waals gas
    F. D. Villalba
    A. F. Vargas
    E. Contreras
    Pedro Bargueño
    General Relativity and Gravitation, 2020, 52
  • [6] Holographic van der Waals Phase Transition for a Hairy Black Hole
    Zeng, Xiao-Xiong
    Han, Yi-Wen
    ADVANCES IN HIGH ENERGY PHYSICS, 2017, 2017
  • [7] Controllable graphene/black phosphorus van der Waals heterostructure tunneling device
    Jiang, Xiao-Qiang
    Chen, Shao-Nan
    Sun, Ruo-Xuan
    Liu, Zhi-Bo
    Materials Letters, 2021, 300
  • [8] Tunneling devices based on graphene/black phosphorus van der Waals heterostructures
    Jiang, Xiao-Qiang
    Li, Xiao-Kuan
    Chen, Shao-Nan
    Su, Bao-Wang
    Huang, Kai-Xuan
    Liu, Zhi-Bo
    Tian, Jian-Guo
    MATERIALS RESEARCH EXPRESS, 2020, 7 (01)
  • [9] Controllable graphene/black phosphorus van der Waals heterostructure tunneling device
    Jiang, Xiao-Qiang
    Chen, Shao-Nan
    Sun, Ruo-Xuan
    Liu, Zhi-Bo
    MATERIALS LETTERS, 2021, 300
  • [10] Time-Resolved Observation of Hole Tunneling in van der Waals Multilayer Heterostructures
    Li, Yuanyuan
    Zhang, Lu
    Chang, Jianhua
    Cui, Qannan
    Zhao, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (10) : 12425 - 12431