Pseudo-Labeling Approach for Land Cover Classification Through Remote Sensing Observations With Noisy Labels

被引:9
|
作者
Mirpulatov, Islombek [1 ]
Illarionova, Svetlana [1 ]
Shadrin, Dmitrii [1 ,2 ]
Burnaev, Evgeny [1 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol Skoltech, Moscow 121205, Russia
[2] Irkutsk Natl Res Tech Univ, Inst Informat Technol & Data Sci, Irkutsk 664074, Russia
[3] Autonomous Nonprofit Org Artificial Intelligence R, Moscow 105064, Russia
关键词
Artificial intelligence; Artificial neural networks; Computer vision; Data analysis; pseudo-labeling; remote sensing; sampling; SCIENCE; SEGMENTATION; FOREST; MODELS;
D O I
10.1109/ACCESS.2023.3300967
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Satellite data allows us to solve a wide range of challenging tasks remotely, including monitoring changing environmental conditions, assessing resources, and evaluating hazards. Computer vision algorithms such as convolutional neural networks have proven to be powerful tools for handling huge visual datasets. Although the number of satellite imagery is constantly growing and artificial intelligence is advancing, the present sticking point in remote sensing studies is the quality and amount of annotated datasets. Typically, manual labels have particular uncertainties and mismatches. Also, a lot of annotated datasets available in low resolution. Available visual representation of the observed objects can be more detailed than annotation. This causes the need for markup adjustment, which can be referred to as a pseudo-labeling task. The main contribution of this research is that we propose a pipeline for pseudo-labeling to address the problem of inaccurate and low-resolution markup improvement for solving land-cover and land-use segmentation task based on the data from the Sentinel-2 satellite. Our methodology takes advantages both of classical machine learning (ML) and deep learning (DL) algorithms. We examine random sampling, uniform sampling, and K-Means sampling and compare it with the full dataset usage. U-Net, DeepLab, and FPN models are trained on the adjusted dataset. The achieved findings show that a simple yet effective approach of data preliminary sampling and further markup refinement leads to significantly higher results than just using raw inaccurate data in a deep neural network pipeline. Moreover, the considered sampling technique allows to use less data for ML model training. The experiments involve markup adjustment and up-scaling from 30m to 10m. We verify the proposed approach in precise test area with manual annotation and show the improvement in F1-score from 0.792 to 0.816.
引用
收藏
页码:82570 / 82583
页数:14
相关论文
共 50 条
  • [1] Unbiased Pseudo-Labeling for Learning with Noisy Labels
    Higashimoto, Ryota
    Yoshida, Soh
    Horihata, Takashi
    Muneyasu, Mitsuji
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (01) : 44 - 48
  • [2] Land cover land use classification of urban areas: A remote sensing approach
    Heikkonen, J
    Varfis, A
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 1998, 12 (04) : 475 - 489
  • [3] Improving semi-supervised remote sensing scene classification via Multilevel Feature Fusion and pseudo-labeling
    Feng, Jiangfan
    Luo, Hongxin
    Gu, Zhujun
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 136
  • [4] PRELIMINARY EXPLORATION OF SAR IMAGE LAND COVER CLASSIFICATION WITH NOISY LABELS
    Zhao, Juanping
    Guo, Weiwei
    Liu, Bin
    Zhang, Zenghui
    Yu, Wenxian
    Cui, Shiyong
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3274 - 3277
  • [5] Radar remote sensing: Land cover classification
    Jaroszewski, S
    Lefevre, R
    1998 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOL. 3, 1998, : 373 - 378
  • [6] SRODET: Semi-Supervised Remote Sensing Object Detection With Dynamic Pseudo-Labeling
    Wang, Wenyong
    Cai, Yuanzheng
    Wang, Tao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [7] Using hyperspectral remote sensing for land cover classification
    Zhang, W
    Sriharan, S
    MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING INSTRUMENTS AND APPLICATIONS II, 2005, 5655 : 261 - 270
  • [8] The Improvement of Land Cover Classification by Thermal Remote Sensing
    Sun, Liya
    Schulz, Karsten
    REMOTE SENSING, 2015, 7 (07) : 8368 - 8390
  • [9] Land cover classification based on remote sensing data
    He, Ying-Ming
    Wang, Han-Jie
    Zhang, Hong-Feng
    Jiefangjun Ligong Daxue Xuebao/Journal of PLA University of Science and Technology (Natural Science Edition), 2011, 12 (03): : 294 - 300
  • [10] Multisensor Temporal Unsupervised Domain Adaptation for Land Cover Mapping With Spatial Pseudo-Labeling and Adversarial Learning
    Capliez, Emmanuel
    Ienco, Dino
    Gaetano, Raffaele
    Baghdadi, Nicolas
    Salah, Adrien Hadj
    Le Goff, Matthieu
    Chouteau, Florient
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61